
初二数学题,答得好者加分。
如图,在正方形ABCD内有一个圆,圆心O到正方形各边的距离相等,E是圆O上一点,请在圆O上再找FGH三点,使连接AE、BF、CG、DH后,能把正方形中园O外的部分分成形状...
如图,在正方形ABCD内有一个圆,圆心O到正方形各边的距离相等,E是圆O上一点,请在圆O上再找FGH三点,使连接AE、BF、CG、DH后,能把正方形中园O外的部分分成形状、大小相等的4块(写出取点的方法,画出示意图)
请说明思路。 展开
请说明思路。 展开
1个回答
展开全部
取点:连接EO并延长交圆O于点G,过O作FH⊥EG并交圆O于点F、H。
证明:连接AO,BO可有正方形对角线相互垂直,可证得三角形AOE与三角形DOH全等,因此角EAO=角HDO,同理可证其他
证明:连接AO,BO可有正方形对角线相互垂直,可证得三角形AOE与三角形DOH全等,因此角EAO=角HDO,同理可证其他
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询