一道数学题,急啊!!
如图,已知△ABC中,∠C=90°,AC=3,BC=2,点D在边AC上,DE⊥AB,垂足为点E,求tan∠ADE的值。能用两种不同的方法求解吗?请写出答案和解题思路,谢谢...
如图,已知△ABC中,∠C=90°,AC=3,BC=2,点D在边AC上,DE⊥AB,垂足为点E,求tan∠ADE的值。能用两种不同的方法求解吗?
请写出答案和解题思路,谢谢!!! 展开
请写出答案和解题思路,谢谢!!! 展开
展开全部
(1)tan∠ADE=tan∠ABC=3/2
(2)tan∠ADE=AE/ED ,AE/ED=AC/BC,所以tan∠ADE=3/2
这两种方法不一样
(2)tan∠ADE=AE/ED ,AE/ED=AC/BC,所以tan∠ADE=3/2
这两种方法不一样
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
换汤不换药,差不多!!
1.∠A+∠ADE=90°,∠A+∠B=90°
∴∠B=∠ADE
tan∠ADE=tan∠B=AC/BC=3/2
2.△AED∽△ACB
∴AE/AC=DE/BC
∴AE/DE=AC/BC=3/2
即tan∠ADE=3/2
1.∠A+∠ADE=90°,∠A+∠B=90°
∴∠B=∠ADE
tan∠ADE=tan∠B=AC/BC=3/2
2.△AED∽△ACB
∴AE/AC=DE/BC
∴AE/DE=AC/BC=3/2
即tan∠ADE=3/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)tan∠ADE=cot∠A=AC/BC=1.5
(2)tan∠ADE=tan∠B=AC/AB=1.5
(2)tan∠ADE=tan∠B=AC/AB=1.5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询