在RT△ABC中∠ACB=90°,AB=5,sin∠CAB=4/5,D是斜边AB上一点 过点A作AE⊥CD
1)当tan∠BCD=1/2时 求线段BF的长
2)当点F在线段BC上是,设AD=x,BF=y,求y关于x的函数解析式,及定义域
3)当BF=5/4 ,求线段AD的长 展开
1)当tan∠BCD=1/2时 求线段BF的长
解析:∵在△ABC,∠ACB=90°,AB=5,sin∠CAB=4/5
∴BC=4,AC=3
在△ACF和△CEF中
∵AE⊥CD,∠AFC=∠CFE
∴△ACF∽△CEF,FE/EC=CF/AC
又tan∠BCD=1/2
∴FE/EC=CF/AC=1/2==>CF=3/2
BF=BC-CF=4-3/2=5/2;
2)如图,两种情况:以高AO为界,AO=2.4,AO=1.8,BO=3.2
①设∠CAF=α,∠EAD=β
AE=xcosβ,cos(α+β)=3/5
cosβ=cos(α+β-α)=cos(α+β)cosα+sin(α+β)sinα=3/5cosα+4/5sinα
∴AE=x(3/5cosα+4/5sinα)
又AC=AE/cosα=x(3/5+4/5tanα)=3
解得tanα=(15-3x)/(4x)
CF=ACtanα=3tanα
∴y=4-CF=4-3tanα=(25x-45)/(4x)
定义域:1.8<x<5,值域:0<y<4
②设∠BAF为a,∠CAB为b
∵AE⊥CE,CO⊥DO
∠ADE=∠CDO
∴△ADE∽△CDO
∠DAE=∠DCO
∴tana=(1.8-x)/2.4
tana=tan(a+b-b)=[tan(a+b)-tanb]/[1+tan(a+b)tanb]=3y/(25+4y)
(1.8-x)/2.4=3y/(25+4y)
y=(25x-45)/-4x
定义域:0<x<1.8
值域:没算到,比较难求,不过题目没有要求...
3)
①5/4=(25x-45)/4x,x=9/4,符合定义域
②5/4=(25x-45)/-4x,x=3/2,符合定义域
1)当tan∠BCD=1/2时 求线段BF的长
解析:∵在⊿ABC,∠ACB=90°,AB=5,sin∠CAB=4/5
∴BC=4,AC=3
在⊿ACF和⊿CEF中
∵AE⊥CD,∠AFC=∠CFE
∴⊿ACF∽⊿CEF,FE/EC=CF/AC
又tan∠BCD=1/2
∴FE/EC=CF/AC=1/2==>CF=3/2
BF=BC-CF=4-3/2=5/2;
2)当点F在线段BC上是,设AD=x,BF=y,求y关于x的函数解析式,及定义域
解析:设∠CAF=α,∠EAD=β
AE=xcosβ,cos(α+β)=4/5
cosβ=cos(α+β-α)=cos(α+β)cosα+sin(α+β)sinα=3/5cosα+4/5sinα
∴AE=x(3/5cosα+4/5sinα)
又AC=AE/cosα=x(3/5+4/5tanα)=3
解得tanα=(15-3x)/(4x)
CF=ACtanα=3tanα
∴y=4-CF=4-3tanα=(25x-45)/(4x)
∴y=(25x-45)/(4x),其定义域为0<x<5
值域为0<y<4
3)当BF=5/4 ,求线段AD的长
解析:由2)知y=(25x-45)/(4x)
5/4=(25x-45)/(4x),解得x=9/4
∴AD=9/4
2010-10-17
∴BC=4,AC=3
在⊿ACF和⊿CEF中
∵AE⊥CD,∠AFC=∠CFE
∴⊿ACF∽⊿CEF,FE/EC=CF/AC
又tan∠BCD=1/2
∴FE/EC=CF/AC=1/2==>CF=3/2
BF=BC-CF=4-3/2=5/2
(2)设∠CAF=α,∠EAD=β
AE=xcosβ,cos(α+β)=4/5
cosβ=cos(α+β-α)=cos(α+β)cosα+sin(α+β)sinα=3/5cosα+4/5sinα
∴AE=x(3/5cosα+4/5sinα)
又AC=AE/cosα=x(3/5+4/5tanα)=3
解得tanα=(15-3x)/(4x)
CF=ACtanα=3tanα
∴y=4-CF=4-3tanα=(25x-45)/(4x)
∴y=(25x-45)/(4x),其定义域为0<x<5
值域为0<y<4
(3)由2)知y=(25x-45)/(4x)
5/4=(25x-45)/(4x),解得x=9/4
∴AD=9/4