若数列{xn}有界,limyn=0,证明limxnyn=0
2个回答
展开全部
证明:
∵数列{Xn}有界,因此:
∀ Xn∈{Xn},∃ M>0,当 n>N1时(N1∈N),
∴|Xn|≤ M成明孝册立
又∵lim(n→∞) Yn = 0
∴∀ ε' >0,∃ N2∈N,当 n>N2时,必有:
|Yn- 0| < ε'成立
即:|Yn|< ε'
显然:
|Xn|·|Yn| < ε'M 成立,此时n=max{N1,N2}
令ε=ε'M,则:
∀ ε>0
|Xn|·|Yn| = |XnYn| < ε 恒成立
∴必有:
lim(n→∞) XnYn =0
简介
数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。
用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其激宏中解析法包慎昌括以通项公式给出数列和以递推公式给出数列。
函数不一定有解析式,同样数列也并非都有通项公式。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |