因式分解:(1):a^3-12a^2b+36ab^2(2):(x+y)^2+4(x-y)^2-4(x^2-y^2) (3):(x^2-2x-2)(x^2-2x+4)+9
5.已知mn^2=-2 求多项式-mn(m^2n^5-mn^3-n) 展开
a^3-12a^2 b+36ab^2
=a^3-6a^2 b-6a^2 b+36ab^2
〖=a〗^2 (a-6b)-6ab(a-6b)
=(a-6b)(a^2-6ab)
〖(x+y)〗^2+4〖(x-y)〗^2-4(x^2-y^2)
=x^2+2xy+y^2+4x^2-8xy+4y^2-4x^2+4y^2
=x^2-6xy+9y^2
=(x-3y)^2
(x^2-2x-2)(x^2-2x+4)+9
=(x^2-2x)^2+2(x^2-2x)+1
=[(x^2-2x)+1]^2
=(x^2-2x+1)^2
=(x-1)^4
-14abc-7ab+49ab^2 c
=-7ab(2c-7bc)-7ab
=-7ab(2c-7bc+1)
=-7ab[c(2-7b)+1]
25〖(m+n)〗^2-4〖(m-n)〗^2
=25(m^2+2mn+n^2 )-4(m^2-2mn+n^2 )
=21m^2+58mn+21n^2
=(7m+3n)(3m+7n)
已知mn^2=-2 求多项式-mn(m^2 n^5-mn^3-n)
-mn(m^2 n^5-mn^3-n)
=mn^2 (-mn)(mn^3-n-n)
=mn^2 (-m^2 n^4+mn^2+mn^2)
以mn^2=-2代入
=(-2)[(-(-2)^2+(-2)+(-2))]
=(-2)(-8)=16