求X的X分之一次方的导数
y=x^(1/x)
两边取对,有:lny=(1/x)lnx,xlny=lnx
两边求导,得:lny+xy′/y=1/x
将y=x^(1/x)带入,得:y′=[x^((1/x)-2)]﹙1-lnx)
当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。只要y关于x的隐函数存在且可导,我们利用复合函数求导法则则仍可以求出其反函数。
扩展资料:
可导的函数一定连续,但连续的函数不一定可导(如y=|x|在y=0处不可导)。导数公式:
1、C'=0(C为常数);
2、(Xn)'=nX(n-1) (n∈R);
3、(sinX)'=cosX;
4、(cosX)'=-sinX;
5、(aX)'=aXIna (ln为自然对数);
6、(logaX)'=(1/X)logae=1/(Xlna) (a>0,且a≠1);
7、(tanX)'=1/(cosX)^2=(secX)^2
8、(cotX)'=-1/(sinX)^2=-(cscX)^2
9、(secX)'=tanX secX;
10、(cscX)'=-cotX cscX。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
参考资料来源:百度百科——求导
y=x^(1/x)
两边取对,有:lny=(1/x)lnx,xlny=lnx
两边求导,得:lny+xy′/y=1/x
将y=x^(1/x)带入,得:y′=[x^((1/x)-2)]﹙1-lnx)
当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。只要y关于x的隐函数存在且可导,我们利用复合函数求导法则则仍可以求出其反函数。
扩展资料:
在推导的过程中有这几个常见的公式需要用到:
1、(链式法则)y=f[g(x)],y'=f'[g(x)]·g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』
2、 y=u*v,y'=u'v+uv'(一般的leibniz公式)
3、y=u/v,y'=(u'v-uv')/v^2,事实上4.可由3.直接推得
4、(反函数求导法则)y=f(x)的反函数是x=g(y),则有y'=1/x'
正切函数y=tanx在开区间(x∈(-π/2,π/2))的反函数,记作y=arctanx 或 y=tan-1x,叫做反正切函数。它表示(-π/2,π/2)上正切值等于 x 的那个唯一确定的角,即tan(arctan x)=x,反正切函数的定义域为R即(-∞,+∞)。反正切函数是反三角函数的一种。
由于正切函数y=tanx在定义域R上不具有一一对应的关系,所以不存在反函数。注意这里选取是正切函数的一个单调区间。而由于正切函数在开区间(-π/2,π/2)中是单调连续的,因此,反正切函数是存在且唯一确定的。
设y=x^(1/x)
lny=1/x*(lnx)
y'/y=(1/x)^2-lnx/x^2
y'=(1-lnx)*x^(1/x)/x^2