已知数列{an}的前n项之和为Sn,是否存在常数a,b,c,使得an=an^2+bn+c,满足a1=1,3Sn=(n+2)an,
1个回答
展开全部
总体思路:
1)根据 a1 = 1 An = an^+ bn + c Sn = (n+2)An / 3
可列出 三个有关 a,b,c的方程,
S1 = (1+2)A1/3 = A1 得: a + b + c = 1
S2 = (2+2)A2/3 = A1 + A2 得: 4a + 2b + c = 3
S3 = (3+2)A3/3 = A1 + A2 + A3 得: 6a - c = 3
从而求得 a = 1/2 , b = 1/2 , c = 0
2) 这样就可得到 An = (n^+ n)/2 = n(n+1)/2
Sn = n(n+1)(n+2)/6
3) 当 n = 1, n =2, n=3 时 Sn = n(n+1)(n+2)/6 成立, 也即
3Sn=(n+2)An 成立!
现在只要当 n = k 时成立,n = k+1 时 Sn = n(n+1)(n+2)/6
也成立即可
假设 n = k 时 成立,则有 Sk = k(k+1)(k+2)/6
现在只要证 当n = k+1 时 S(k+1) = Sk + A(k+1) 则可
S(k+1) = (k+3)(k+1)(k+2)/6
Sk + A(k+1)= k(k+1)(k+2)/6 + (k+1)(k+2)/2
证明两者相等不难,且无论k取什么N*都可以相等
也即命题成立!
1)根据 a1 = 1 An = an^+ bn + c Sn = (n+2)An / 3
可列出 三个有关 a,b,c的方程,
S1 = (1+2)A1/3 = A1 得: a + b + c = 1
S2 = (2+2)A2/3 = A1 + A2 得: 4a + 2b + c = 3
S3 = (3+2)A3/3 = A1 + A2 + A3 得: 6a - c = 3
从而求得 a = 1/2 , b = 1/2 , c = 0
2) 这样就可得到 An = (n^+ n)/2 = n(n+1)/2
Sn = n(n+1)(n+2)/6
3) 当 n = 1, n =2, n=3 时 Sn = n(n+1)(n+2)/6 成立, 也即
3Sn=(n+2)An 成立!
现在只要当 n = k 时成立,n = k+1 时 Sn = n(n+1)(n+2)/6
也成立即可
假设 n = k 时 成立,则有 Sk = k(k+1)(k+2)/6
现在只要证 当n = k+1 时 S(k+1) = Sk + A(k+1) 则可
S(k+1) = (k+3)(k+1)(k+2)/6
Sk + A(k+1)= k(k+1)(k+2)/6 + (k+1)(k+2)/2
证明两者相等不难,且无论k取什么N*都可以相等
也即命题成立!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询