高数!!求详解

设f(x)在[0,1]上连续,在(0,1)内二阶可导,且f(0)=f(1)=0,证明:在(0,1)内必存在c,使f''(c)=2f'(c)/(1-c)... 设f(x)在[0,1]上连续,在(0,1)内二阶可导,且f(0)=f(1)=0,证明:在(0,1)内必存在c,使f ''(c)=2f '(c)/(1-c) 展开
laoketing
2010-10-17 · 超过10用户采纳过TA的回答
知道答主
回答量:14
采纳率:0%
帮助的人:0
展开全部
令F(x)=(1-x)*f(x),F(0)=F(1)=0,在[0,1]上应用罗尔中值定理,存在ξ属于(0,1),使得F’(ξ)=0。
F'(x)=-f(x)+(1-x)f'(x)
F''(x)=-2*f'(x)+(1-x)*f''(x) (*)
F'(ξ)=0,F'(1)=0,在[ξ,1]上应用罗尔中值定理,存在c属于(ξ,1),使得
F''(c)=0代入(*)得,F''(c)=-2*f'(c)+(1-c)*f''(c) =0
得证。
希望满意。。。。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式