1个回答
展开全部
令(1+x)^(1/12)=t则t趋近于1
lim((1+x)^(1/4)-1)/(1+x)^(1/3)-1)
=lim(t^3-1)/(t^4-1)
=lim[(t-1)(t^2+t+1)]/(t^2+1)(t^2-1)
=lim[(t-1)(t^2+t+1)]/(t^2+1)(t-1)(t+1)
=lim(t^2+t+1)/(t^2+1)(t+1)
=lim(1+1+1)/(1+1)(1+1)
=3/4
lim((1+x)^(1/4)-1)/(1+x)^(1/3)-1)
=lim(t^3-1)/(t^4-1)
=lim[(t-1)(t^2+t+1)]/(t^2+1)(t^2-1)
=lim[(t-1)(t^2+t+1)]/(t^2+1)(t-1)(t+1)
=lim(t^2+t+1)/(t^2+1)(t+1)
=lim(1+1+1)/(1+1)(1+1)
=3/4
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询