一道高一的数学函数题
若函数y=f(x)对任意x,y属于R,恒有f(x+y)=f(x)+f(y)。(1)求证:y=f(x)是奇函数。(2)若f(-3)=a,求f(24)...
若函数y=f(x)对任意x,y属于R,恒有f(x+y)=f(x)+f(y)。(1)求证:y=f(x)是奇函数。(2)若f(-3)=a,求f(24)
展开
3个回答
2010-10-17
展开全部
(1)令x=y=0,f(0)=f(0)+f(0),所以f(0)=0,令x=-y,
f(0)=f(x)+f(-x) f(-x)=-f(x) 为奇函数
(2)f(3)=-f(-3)=-a
f(24)=8f(3)=-8a
f(0)=f(x)+f(-x) f(-x)=-f(x) 为奇函数
(2)f(3)=-f(-3)=-a
f(24)=8f(3)=-8a
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
令x=y=0;f(x+y)=f(x)+f(y)
就是f(0+0)=f(0)+f(0)
就是f(0)=2f(0)
解得f(0)=0
令x=-y
则f(x+y)=f(-y+y)=f(0)=f(x)+f(y)=f(-y)+f(y)
就是f(0)=f(-y)+f(y)
而f(0)=0
就是f(-y)+f(y)=0
就是f(y)=-f(-y) 奇函数
(2)
利用f(x)奇函数f(3)=-a
令x=y=3
则f(3+3)=f(6)=2f(3)=-2a
同理f(12)=2f(6)=-4a
f(24)=2f(12)=-8a
就是f(0+0)=f(0)+f(0)
就是f(0)=2f(0)
解得f(0)=0
令x=-y
则f(x+y)=f(-y+y)=f(0)=f(x)+f(y)=f(-y)+f(y)
就是f(0)=f(-y)+f(y)
而f(0)=0
就是f(-y)+f(y)=0
就是f(y)=-f(-y) 奇函数
(2)
利用f(x)奇函数f(3)=-a
令x=y=3
则f(3+3)=f(6)=2f(3)=-2a
同理f(12)=2f(6)=-4a
f(24)=2f(12)=-8a
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询