已知函数f(x)=2^x-2^(-x),数列{an}满足f[log2(an)]=-2n. (1)求数列的通项公式 (2)...
已知函数f(x)=2^x-2^(-x),数列{an}满足f[log2(an)]=-2n.(1)求数列的通项公式(2)求证:数列是递减数列。...
已知函数f(x)=2^x-2^(-x),数列{an}满足f[log2(an)]=-2n.
(1)求数列的通项公式
(2)求证:数列是递减数列。 展开
(1)求数列的通项公式
(2)求证:数列是递减数列。 展开
3个回答
展开全部
f[log2(an)]=2^log2(an)-2^(-log2(an))
=an-1/an=-2n
an^2+2n*an-1=0
(an+n)^2=n^2+1
又log2(X)的定义域是X>0
所以
an=根号(n^2+1)-n
an'<0 =>数列是递减数列
=an-1/an=-2n
an^2+2n*an-1=0
(an+n)^2=n^2+1
又log2(X)的定义域是X>0
所以
an=根号(n^2+1)-n
an'<0 =>数列是递减数列
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询