(1)已知数列{an}中a1=1 an+1=an+2^n-1求an(2)已知数列{an}中a1=4 an+1=5^n*an求an
展开全部
(1)a(n+1)=an+2^n-1
a(n+1)-an=2^n-1
an-a1
=(an-a(n-1))+(a(n-1)-a(n-2))+……+a2-a1
=2^n+2^(n-1)+……+2-(n-1)
=2^n-2-n+1
=2^n-n-1
得an=2^n-n
(2)a(n+1)=5^n*an
得a(n+1)/an=5^n
an/a1=an/a(n-1)*a(n-1)/a(n-2)*……*a2/a1
=5^(n+n-1+……+2)
=5^((n-1)(n+2)/2)
得an=4*5^((n-1)(n+2)/2
a(n+1)-an=2^n-1
an-a1
=(an-a(n-1))+(a(n-1)-a(n-2))+……+a2-a1
=2^n+2^(n-1)+……+2-(n-1)
=2^n-2-n+1
=2^n-n-1
得an=2^n-n
(2)a(n+1)=5^n*an
得a(n+1)/an=5^n
an/a1=an/a(n-1)*a(n-1)/a(n-2)*……*a2/a1
=5^(n+n-1+……+2)
=5^((n-1)(n+2)/2)
得an=4*5^((n-1)(n+2)/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询