一道微积分难题 求详细过程 谢谢!!拜托高手们帮帮忙!!
1个回答
展开全部
∵
lim(x→∞) (px^2-2)/(x^2+1)+3qx+5 = 0
∴①
0 = lim(x→∞) { (px^2-2)/(x^2+1)+3qx+5 }/x
= lim(x→∞) (px-2/x)/(x^2+1)+3q +5/x
= lim(x→∞) (p/x-2/x^3)/(1+1/x^2) + 3q + 5/x
= 0 + 3q + 0
=3q
∴ q = 0
②
∵
0 = lim(x→∞) (px^2-2)/(x^2+1) + 5
= lim(x→∞) (p-2/x^2)/(1+1/x^2) + 5
= p + 5
∴ p = -5
lim(x→∞) (px^2-2)/(x^2+1)+3qx+5 = 0
∴①
0 = lim(x→∞) { (px^2-2)/(x^2+1)+3qx+5 }/x
= lim(x→∞) (px-2/x)/(x^2+1)+3q +5/x
= lim(x→∞) (p/x-2/x^3)/(1+1/x^2) + 3q + 5/x
= 0 + 3q + 0
=3q
∴ q = 0
②
∵
0 = lim(x→∞) (px^2-2)/(x^2+1) + 5
= lim(x→∞) (p-2/x^2)/(1+1/x^2) + 5
= p + 5
∴ p = -5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询