展开全部
解:因为 x^2+1/x^2=3,
因此 (x^2-1/x^2)^2=(x^2+1/x^2)^2-4
=3^2-4
=5.
所以 x^2-1/x^2=正负根号5.
= = = = = = =
注意:
(1)x^2-1/x^2可正可负.因为是同号相减.
(2)(a+b)^2=(a-b)^2+4ab.
(a-b)^2=(a+b)^2-4ab.
因此a+b,a-b,ab,已知其中两个都可以求第3个.
(3)开方时注意正负.
设a,b同号,则a+b>0,a-b正负未知.
因此x^2-1/x^2可正可负.
因此 (x^2-1/x^2)^2=(x^2+1/x^2)^2-4
=3^2-4
=5.
所以 x^2-1/x^2=正负根号5.
= = = = = = =
注意:
(1)x^2-1/x^2可正可负.因为是同号相减.
(2)(a+b)^2=(a-b)^2+4ab.
(a-b)^2=(a+b)^2-4ab.
因此a+b,a-b,ab,已知其中两个都可以求第3个.
(3)开方时注意正负.
设a,b同号,则a+b>0,a-b正负未知.
因此x^2-1/x^2可正可负.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询