已知函数f(x)=ax^2+bx+c(a不等于0),且f(x)=x没有实数根,那么f(f(x))=x是否有实根,说明理由

已知函数f(x)=ax^2+bx+c(a不等于0),且f(x)=x没有实数根,那么f(f(x))=x是否有实根,说明理由... 已知函数f(x)=ax^2+bx+c(a不等于0),且f(x)=x没有实数根,那么f(f(x))=x是否有实根,说明理由 展开
百度网友bf61bc1
2010-10-20 · TA获得超过207个赞
知道答主
回答量:81
采纳率:0%
帮助的人:97.1万
展开全部
假设f(f(x))=x有实根,那么f(x)=g(x),g(x)是f(x)的反函数,根据函数与反函数的性质可知,如果函数与其反函数有交点,那么交点一定在y=x上,或者关于y=x对称,而由于这里f(x)是抛物线,那么交点一定在y=x,也就是说y=f(x)与y=x,也有交点,这与题中f(x)=x无实根矛盾,因此假设不成立,即f(f(x))=x也没有实根。
风逸灬杰
2010-10-20 · TA获得超过906个赞
知道小有建树答主
回答量:179
采纳率:0%
帮助的人:195万
展开全部
因为f(x)=x没有实数根且f(x)二次系数a不等于0
所以f(x)-x恒大于0或者恒小于0
同理f(f(x))-f(x)也是恒大于0或者恒小于0且正负号与f(x)-x相同
则两者之和也有此性质
所以f(f(x))-x=0没有实数根!
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式