
1个回答
展开全部
解:f(x)=(x+1)²+2
若允许x取任意实数,则f(x)在x=-1时取得最小值2
而题设f(x)在[t,0]上取得最小值-2,所以t≤-1
通过计算知f(-2)=(-1)²+2=3
因f(x)在(-∞,-1)单调减少,故当t<-2时,f(t)>f(-2)=3,与题设“f(x)在[t,0]上取得最大值3”矛盾,所以t≥-2
综上述,t的取值范围是[-2,-1]
若允许x取任意实数,则f(x)在x=-1时取得最小值2
而题设f(x)在[t,0]上取得最小值-2,所以t≤-1
通过计算知f(-2)=(-1)²+2=3
因f(x)在(-∞,-1)单调减少,故当t<-2时,f(t)>f(-2)=3,与题设“f(x)在[t,0]上取得最大值3”矛盾,所以t≥-2
综上述,t的取值范围是[-2,-1]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询