1个回答
展开全部
解:
方程两边同乘以√2/2
x^3+2√2x^2+2x+√2-1=0
x^3+(√2-1)x^2+(√2+1)x^2+x+x+√2-1=0
x^2(x+√2-1)+(√2+1)x(x+√2-1)+(x+√2-1)=0
(x+√2-1)[x^2+(√2+1)x+1]=0
(x+√2-1){[(x+(√2+1)/2]^2-(2√2-1)/4}=0
(x+√2-1)[x+(√2+1)/2+√(2√2-1)/2][x+(√2+1)/2-√(2√2-1)/2]=0
x=1-√2
或
x=[-(√2+1)±√(2√2-1)]/2
方程两边同乘以√2/2
x^3+2√2x^2+2x+√2-1=0
x^3+(√2-1)x^2+(√2+1)x^2+x+x+√2-1=0
x^2(x+√2-1)+(√2+1)x(x+√2-1)+(x+√2-1)=0
(x+√2-1)[x^2+(√2+1)x+1]=0
(x+√2-1){[(x+(√2+1)/2]^2-(2√2-1)/4}=0
(x+√2-1)[x+(√2+1)/2+√(2√2-1)/2][x+(√2+1)/2-√(2√2-1)/2]=0
x=1-√2
或
x=[-(√2+1)±√(2√2-1)]/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询