二阶段最小二乘法和SPSS中回归和相关性检验哪个有关?
为啥我看了各文献,里面用二阶段最小二乘法出来的数,是后面带*的就是相关性出来的那种数据,而我老师让我跟着文献那样子做,却又让我看回归里面什么F啊VIF啊?这之间什么关系?...
为啥我看了各文献,里面用二阶段最小二乘法出来的数,是后面带*的 就是相关性出来的那种数据,而我老师让我跟着文献那样子做,却又让我看回归里面什么F啊VIF啊?这之间什么关系?我问我老师他说最小二乘法就是回归?
展开
2个回答
展开全部
应该是用 用加权最小二乘法消除异方差性吧? 或者 偏最小二乘,多重共线性?因为涉及的统计中,线性模型中的随机误差项e是否存在异方差性,或者自变量X是否多重共线性,如果存在线性回归中 SPSS中检验模型的显著性和参数的显著性 则可能通不过 造成F值 T值 出现问题,估计的参数也非合适,则模型不能用来做回归分析
与传统多元线性回归模型相比,偏最小二乘回归的特点是:(1)能够在自变量存在严重多重相关性的条件下进行回归建模;(2)允许在样本点个数少于变量个数的条件下进行回归建模;(3)偏最小二乘回归在最终模型中将包含原有的所有自变量;(4)偏最小二乘回归模型更易于辨识系统信息与噪声(甚至一些非随机性的噪声);(5)在偏最小二乘回归模型中,每一个自变量的回归系数将更容易解释。
在计算方差和协方差时,求和号前面的系数有两种取法:当样本点集合是随机抽取得到时,应该取1/(n-1);如果不是随机抽取的,这个系数可取1/n。
多重相关性的诊断
1 经验式诊断方法
1、在自变量的简单相关系数矩阵中,有某些自变量的相关系数值较大。
2、回归系数的代数符号与专业知识或一般经验相反;或者,它同该自变量与y的简单相关系数符号相反。
3、对重要自变量的回归系数进行t检验,其结果不显著。
特别典型的是,当F检验能在高精度下通过,测定系数R2的值亦很大,但自变量的t检验却全都不显著,这时,多重相关性的可能性将很大。
4、如果增加(或删除)一个变量,或者增加(或删除)一个观测值,回归系数的估计值发生了很大的变化。
5、重要自变量的回归系数置信区间明显过大。
6、在自变量中,某一个自变量是另一部分自变量的完全或近似完全的线性组合。
7、对于一般的观测数据,如果样本点的个数过少,样本数据中的多重相关性是经常存在的。
但是,采用经验式方法诊断自变量系统中是否确实存在多重相关性,并不十分可靠,另一种较正规的方法是利用统计检验(回归分析),检查每一个自变量相对其它自变量是否存在线性关系。
VIF方差膨胀因子
最常用的多重相关性的正规诊断方法是使用方差膨胀因子。自变量xj的方差膨胀因子记为(VIF)j,它的计算方法为
(4-5) (VIF)j =(1-R j2)-1
式中,R j2是以xj为因变量时对其它自变量回归的复测定系数。
所有xj变量中最大的(VIF)j通常被用来作为测量多重相关性的指标。一般认为,如果最大的(VIF)j超过10,常常表示多重相关性将严重影响最小二乘的估计值。
(VIF)j被称为方差膨胀因子的原因,是由于它还可以度量回归系数的估计方差与自变量线性无关时相比,增加了多少。
可否 心知林小姐
与传统多元线性回归模型相比,偏最小二乘回归的特点是:(1)能够在自变量存在严重多重相关性的条件下进行回归建模;(2)允许在样本点个数少于变量个数的条件下进行回归建模;(3)偏最小二乘回归在最终模型中将包含原有的所有自变量;(4)偏最小二乘回归模型更易于辨识系统信息与噪声(甚至一些非随机性的噪声);(5)在偏最小二乘回归模型中,每一个自变量的回归系数将更容易解释。
在计算方差和协方差时,求和号前面的系数有两种取法:当样本点集合是随机抽取得到时,应该取1/(n-1);如果不是随机抽取的,这个系数可取1/n。
多重相关性的诊断
1 经验式诊断方法
1、在自变量的简单相关系数矩阵中,有某些自变量的相关系数值较大。
2、回归系数的代数符号与专业知识或一般经验相反;或者,它同该自变量与y的简单相关系数符号相反。
3、对重要自变量的回归系数进行t检验,其结果不显著。
特别典型的是,当F检验能在高精度下通过,测定系数R2的值亦很大,但自变量的t检验却全都不显著,这时,多重相关性的可能性将很大。
4、如果增加(或删除)一个变量,或者增加(或删除)一个观测值,回归系数的估计值发生了很大的变化。
5、重要自变量的回归系数置信区间明显过大。
6、在自变量中,某一个自变量是另一部分自变量的完全或近似完全的线性组合。
7、对于一般的观测数据,如果样本点的个数过少,样本数据中的多重相关性是经常存在的。
但是,采用经验式方法诊断自变量系统中是否确实存在多重相关性,并不十分可靠,另一种较正规的方法是利用统计检验(回归分析),检查每一个自变量相对其它自变量是否存在线性关系。
VIF方差膨胀因子
最常用的多重相关性的正规诊断方法是使用方差膨胀因子。自变量xj的方差膨胀因子记为(VIF)j,它的计算方法为
(4-5) (VIF)j =(1-R j2)-1
式中,R j2是以xj为因变量时对其它自变量回归的复测定系数。
所有xj变量中最大的(VIF)j通常被用来作为测量多重相关性的指标。一般认为,如果最大的(VIF)j超过10,常常表示多重相关性将严重影响最小二乘的估计值。
(VIF)j被称为方差膨胀因子的原因,是由于它还可以度量回归系数的估计方差与自变量线性无关时相比,增加了多少。
可否 心知林小姐
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询