1个回答
展开全部
解:
log(1/2)(8)=-3≤log(1/2)(x)≤-1/2=log(1/2)(√2)
∴8≥x≥√2
y=[log(2)(x/2)][log(2)(x/4)]
=[log(2)(x) -1][log(2)(x) -2]
令log(2)(x)=t∈[1/2,3]
∴y=(t-1)(t-2)
=t²-3t+2
函数图象对称轴t=3/2,开口向上,则
f(t)min=f(3/2)=9/4-9/2+2=-1/4
f(t)max=f(3)=9-9+2=2
值域是[-1/4,2]
log(1/2)(8)=-3≤log(1/2)(x)≤-1/2=log(1/2)(√2)
∴8≥x≥√2
y=[log(2)(x/2)][log(2)(x/4)]
=[log(2)(x) -1][log(2)(x) -2]
令log(2)(x)=t∈[1/2,3]
∴y=(t-1)(t-2)
=t²-3t+2
函数图象对称轴t=3/2,开口向上,则
f(t)min=f(3/2)=9/4-9/2+2=-1/4
f(t)max=f(3)=9-9+2=2
值域是[-1/4,2]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询