用遗传算法求解作业车间调度的MATLAB程序问题
运行以下程序时老是提示:???Inputargument"T"isundefined.Errorin==>JSPGAat23[m,n]=size(T);%m是总工件数,n...
运行以下程序时老是提示:
??? Input argument "T" is undefined.
Error in ==> JSPGA at 23
[m,n]=size(T);%m是总工件数,n是总工序数
程序如下(从网上弄来的,本人对MATLAB不懂):
function [Zp,Y1p,Y2p,Y3p,Xp,LC1,LC2]=JSPGA(M,N,Pm,T,P)
%--------------------------------------------------------------------------
% JSPGA.m
% 车间作业调度问题遗传算法
%--------------------------------------------------------------------------
% 输入参数列表
% M 遗传进化迭代次数
% N 种群规模(取偶数)
% Pm 变异概率
% T m×n的矩阵,存储m个工件n个工序的加工时间
% P 1×n的向量,n个工序中,每一个工序所具有的机床数目
% 输出参数列表
% Zp 最优的Makespan值
% Y1p 最优方案中,各工件各工序的开始时刻,可根据它绘出甘特图
% Y2p 最优方案中,各工件各工序的结束时刻,可根据它绘出甘特图
% Y3p 最优方案中,各工件各工序使用的机器编号
% Xp 最优决策变量的值,决策变量是一个实数编码的m×n矩阵
% LC1 收敛曲线1,各代最优个体适应值的记录
% LC2 收敛曲线2,各代群体平均适应值的记录
% 最后,程序还将绘出三副图片:两条收敛曲线图和甘特图(各工件的调度时序图)
%第一步:变量初始化
[m,n]=size(T);%m是总工件数,n是总工序数
Xp=zeros(m,n);%最优决策变量
X=FARM{i};
Z=COST(X,T,P,plotif);%调用计算费用的子函数
FITNESS(i)=Z;
end
%选择复制采取两两随机配对竞争的方式,具有保留最优个体的能力
Ser=randperm(2*N);
for i=1:N
f1=FITNESS(Ser(2*i-1));
f2=FITNESS(Ser(2*i));
if f1<=f2
farm{i}=FARM{Ser(2*i-1)};
fitness(i)=FITNESS(Ser(2*i-1));
else
farm{i}=FARM{Ser(2*i)};
fitness(i)=FITNESS(Ser(2*i));
end
end
%记录最佳个体和收敛曲线
minfitness=min(fitness)
meanfitness=mean(fitness)
LC1(counter+1)=minfitness;%收敛曲线1,各代最优个体适应值的记录
LC2(counter+1)=meanfitness;%收敛曲线2,各代群体平均适应值的记录
pos=find(fitness==minfitness);
Xp=farm{pos(1)};
%第五步:变异
for i=1:N
if Pm>rand;%变异概率为Pm
X=farm{i};
I=unidrnd(m);
J=unidrnd(n);
X(I,J)=1+(P(J)-eps)*rand;
farm{i}=X;
end
end
farm{pos(1)}=Xp;
counter=counter+1
end 展开
??? Input argument "T" is undefined.
Error in ==> JSPGA at 23
[m,n]=size(T);%m是总工件数,n是总工序数
程序如下(从网上弄来的,本人对MATLAB不懂):
function [Zp,Y1p,Y2p,Y3p,Xp,LC1,LC2]=JSPGA(M,N,Pm,T,P)
%--------------------------------------------------------------------------
% JSPGA.m
% 车间作业调度问题遗传算法
%--------------------------------------------------------------------------
% 输入参数列表
% M 遗传进化迭代次数
% N 种群规模(取偶数)
% Pm 变异概率
% T m×n的矩阵,存储m个工件n个工序的加工时间
% P 1×n的向量,n个工序中,每一个工序所具有的机床数目
% 输出参数列表
% Zp 最优的Makespan值
% Y1p 最优方案中,各工件各工序的开始时刻,可根据它绘出甘特图
% Y2p 最优方案中,各工件各工序的结束时刻,可根据它绘出甘特图
% Y3p 最优方案中,各工件各工序使用的机器编号
% Xp 最优决策变量的值,决策变量是一个实数编码的m×n矩阵
% LC1 收敛曲线1,各代最优个体适应值的记录
% LC2 收敛曲线2,各代群体平均适应值的记录
% 最后,程序还将绘出三副图片:两条收敛曲线图和甘特图(各工件的调度时序图)
%第一步:变量初始化
[m,n]=size(T);%m是总工件数,n是总工序数
Xp=zeros(m,n);%最优决策变量
X=FARM{i};
Z=COST(X,T,P,plotif);%调用计算费用的子函数
FITNESS(i)=Z;
end
%选择复制采取两两随机配对竞争的方式,具有保留最优个体的能力
Ser=randperm(2*N);
for i=1:N
f1=FITNESS(Ser(2*i-1));
f2=FITNESS(Ser(2*i));
if f1<=f2
farm{i}=FARM{Ser(2*i-1)};
fitness(i)=FITNESS(Ser(2*i-1));
else
farm{i}=FARM{Ser(2*i)};
fitness(i)=FITNESS(Ser(2*i));
end
end
%记录最佳个体和收敛曲线
minfitness=min(fitness)
meanfitness=mean(fitness)
LC1(counter+1)=minfitness;%收敛曲线1,各代最优个体适应值的记录
LC2(counter+1)=meanfitness;%收敛曲线2,各代群体平均适应值的记录
pos=find(fitness==minfitness);
Xp=farm{pos(1)};
%第五步:变异
for i=1:N
if Pm>rand;%变异概率为Pm
X=farm{i};
I=unidrnd(m);
J=unidrnd(n);
X(I,J)=1+(P(J)-eps)*rand;
farm{i}=X;
end
end
farm{pos(1)}=Xp;
counter=counter+1
end 展开
展开全部
你好歹看一下程序嘛,人家都给你注释了输入输出都是啥,弊并乱你使用的时候得先给输入赋值蔽棚。在命令行输入M=啥,N=啥···然后再输[Zp,Y1p,Y2p,Y3p,Xp,LC1,LC2]=JSPGA(M,N,Pm,T,P)
左边租档这些就是输出了,要是运行成功会在workspace里面看到
左边租档这些就是输出了,要是运行成功会在workspace里面看到
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
彩驰科技
2024-11-22 广告
2024-11-22 广告
互联网算法备案平台,专业代理代办,快速响应,高效办理!专业代理代办,快速办理,让您省时省力!专业团队为您提供优质服务,让您的互联网算法备案更顺利!咨询电话:13426378072,13436528688...
点击进入详情页
本回答由彩驰科技提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询