有理数包括小数吗?

帐号已注销
2019-04-04 · TA获得超过82.9万个赞
知道大有可为答主
回答量:2602
采纳率:100%
帮助的人:176万
展开全部

并不全包括。

有理数包括有限小数和无限循环小数。即有理数就是分数,而无限不循环小数属于无理数。有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。

小数,是实数的一种特殊的表现形式。所有分数都可以表示成小数,小数中的圆点叫做小数点,它是一个小数的整数部分和小数部分的分界号。其中整数部分是零的小数叫做纯小数,整数部分不是零的小数叫做带小数。

扩展资料:

有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集是密集的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性。整数集没有这一特性,两个相邻的整数之间就没有其他的整数了。

有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。

参考资料来源:百度百科-有理数

穆子澈想我1997
推荐于2019-10-27 · TA获得超过44.3万个赞
知道小有建树答主
回答量:672
采纳率:100%
帮助的人:37万
展开全部

并不全包括。

有理数包括有限小数和无限循环小数。即有理数就是分数,而无限不循环小数属于无理数。有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。

小数,是实数的一种特殊的表现形式。所有分数都可以表示成小数,小数中的圆点叫做小数点,它是一个小数的整数部分和小数部分的分界号。其中整数部分是零的小数叫做纯小数,整数部分不是零的小数叫做带小数。

扩展资料

小数分类

1、有限小数

小数部分后有有限个数位的小数。如3.1465,0.364,8.3218798456等,有限小数都属于有理数,可以化成分数形式。

一个最简分数可以被化作十进制的有限小数当且仅当其分母只含有质因数2或5或两者。 类似的,一个最简分数可以被化作某正整数底数的有限小数当且仅当其分母之质因数为此基底质因数的子集。

2、无限小数

(1)循环小数

从小数部分的某一位起,一个数字或几个数字,依次不断地重复出现的小数叫做循环小数。如 1/7=0.142857142857142857……,11/6=1.833333……等。循环小数亦属于有理数,可以化成分数形式。

(2)无限不循环小数

小数部分有无限多个数字,且没有依次不断地重复出现的一个数字或几个数字的小数叫做无限不循环小数,如圆周率π=3.14159265358979323……,自然对数的底数e=2.71828182845904……。无限不循环小数也就是无理数,不能化成分数形式。

参考资料来源:

百度百科—有理数

百度百科—小数

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友8118841
高粉答主

推荐于2019-10-07 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:209
采纳率:100%
帮助的人:7.3万
展开全部

不一定。准确的说:有理数包括有限小数和无限循环小数。即有理数就是分数,而无限不循环小数属于无理数。有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。

扩展资料:

整数和分数统称为有理数,任何一个有理数都可以写成分数m/n的形式,m,n都是整数,且n≠0,m,n互质。

无限不循环小数和开根开不尽的数叫无理数 ,比如π,3.1415926535897932384626。而有理数恰恰与它相反,整数和分数统称为有理数。

参考资料来源:百度百科—有理数

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
暴走爱生活55
高能答主

推荐于2019-10-22 · 我是生活小达人,乐于助人就是我
暴走爱生活55
采纳数:4155 获赞数:1692793

向TA提问 私信TA
展开全部

有理数包括小数。

有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。

由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。

有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。

扩展资料:

一、命名由来

“有理数”这一名称不免叫人费解,有理数并不比别的数更“有道理”。事实上,这似乎是一个翻译上的失误。有理数一词是从西方传来,在英语中是rational number,而rational通常的意义是“理性的”。

中国在近代翻译西方科学著作,依据日语中的翻译方法,以讹传讹,把它译成了“有理数”。但是,这个词来源于古希腊,其英文词根为ratio,就是比率的意思(这里的词根是英语中的,希腊语意义与之相同)。

所以这个词的意义也很显豁,就是整数的“比”。与之相对,“无理数”就是不能精确表示为两个整数之比的数,而并非没有道理。

二、有理数运算定律

1、加法运算律:

1)加法交换律:

两个数相加,交换加数的位置,和不变,即

2)加法结合律:

三个数相加,先把前两个数相加或者先把后两个数相加,和不变,即  

2、减法运算律:

1)减法运算律:

减去一个数,等于加上这个数的相反数。即:  

2)乘法运算律:

乘法交换律:两个数相乘,交换因数的位置,积不变,即

乘法结合律:三个数相乘,先把前两个数先乘,或者先把后两个相乘,积不变,即

乘法分配律:某个数与两个数的和相乘等于把这个数分别与这两个数相乘,再把积相加,即: 

参考资料来源:百度百科-有理数

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
白雪忘冬
高粉答主

2019-05-25 · 在我的情感世界留下一方美好的文字
白雪忘冬
采纳数:1007 获赞数:376634

向TA提问 私信TA
展开全部

并不全包括。

有理数包括有限小数和无限循环小数。即有理数就是分数,而无限不循环小数属于无理数。数学上,有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b。0也是有理数。

有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。

小数的分类:

1、纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。

2、混循环小数:循环节不从小数部分第一位开始的,叫做混循环小数。

3、有限小数:小数部分的位数是有限的小数,叫做有限小数。

4、无限小数:小数部分的位数是无限的小数,叫做无限小数。循环小数是无限小数。

扩展资料

1、有理数的大小比较

比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小。

2、有理数大小比较的法则:

①正数都大于0;

②负数都小于0;

③正数大于一切负数;

④两个负数,绝对值大的其值反而小。

规律方法·有理数大小比较的三种方法:

(1)法则比较:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,绝对值大的反而小。

(2)数轴比较:在数轴上右边的点表示的数大于左边的点表示的数。

(3)作差比较:

若a﹣b>0,则a>b;

若a﹣b<0,则a<b;

若a﹣b=0,则a=b。

参考资料来源:百度百科-有理数

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(6)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式