已知数列an中,a1=3,an+1=2an-1,设bn=2n/anan+1,求证:数列bn的前n项和Sn<1/3
已知数列an中,a1=3,an+1=2an-1,设bn=2n/anan+1,求证:数列bn的前n项和Sn<1/3...
已知数列an中,a1=3,an+1=2an-1,设bn=2n/anan+1,求证:数列bn的前n项和Sn<1/3
展开
1个回答
展开全部
数列an中,a1=3,a<n+1>=2an-1,
∴a<n+1>-1=2(an-1),
∴an-1=(a1-1)*2^(n-1)=2^n,
∴an=2^n+1,
∴bn=2n/{(2^n+1)(2^(n+1)+1]},
∴Sn=2/(3*5)+4/(5*9)+……+2n/{(2^n+1)(2^(n+1)+1]}
=1/3-1/5+1/5-1/9+……+[n/2^(n-1)][1/(2^n+1)-1/[2^(n+1)+1],
当n∈N+时n<=2^(n-1),
∴Sn<=1/3-1/[2^(n+1)+1]<1/3.
∴a<n+1>-1=2(an-1),
∴an-1=(a1-1)*2^(n-1)=2^n,
∴an=2^n+1,
∴bn=2n/{(2^n+1)(2^(n+1)+1]},
∴Sn=2/(3*5)+4/(5*9)+……+2n/{(2^n+1)(2^(n+1)+1]}
=1/3-1/5+1/5-1/9+……+[n/2^(n-1)][1/(2^n+1)-1/[2^(n+1)+1],
当n∈N+时n<=2^(n-1),
∴Sn<=1/3-1/[2^(n+1)+1]<1/3.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询