过抛物线的顶点O作两条相互垂直的弦OA和OB 求证 弦AB与抛物线的对称轴交与定点
2个回答
2013-11-24
展开全部
设OA斜率为k,则OB斜率为-1/k--->OA:y=k; OB:y=-x/k
OA与抛物线方程联立:(kx)^=2px----->xA=2p/k^,yA=2p/k
OB与抛物线方程联立:(-x/k)^=2px--->xB=2pk^,yB=-2pk
AB方程:y+2pk = [(2p/k+2pk)/(2p/k^-2pk^)](x-2pk^)
令:y=0--->x=2pk^+2pk[(1/k^-k^)/(1/k+k)]
=2pk^+2p[(1-k^^)/(1+k^)]
=2pk^+2p(1-k^)
=2p
即:AB恒过定点(2p,0)
(1).当AB垂直x轴时,AB:x=p/2
A(p/2, p), B(p/2, -p)
AB=2p
S△AOB=p^2/2
(2).当AB不垂直x轴时,AB:y=k(x-p/2),k≠0
代入抛物线:k^2(x^2-px+p^2/4)=2px
k^2x^2-(k^2+2)px+k^2p^2/4=0
所以 x1+x2=(k^2+2)p/k^2, x1*x2=p^2/4
所以 |y1-y2|=√(y1-y2)^2
=√(kx1-kx2)^2
=|k|*√(x1-x2)^2
=|k|*√[(x1+x2)^2-4x1x2]
=|k|*√[(k^2+2)^2p^2/k^4-p^2]
=|2p/k|*√(k^2+1)
所以 S△AOB=|2p/k|*√(k^2+1)*(p/2)*(1/2)
=|p^2/2k|√(k^2+1)
=|p^2/2|√(1+1/k^2)
无最小值。当k趋向无穷大时,S△AOB=p^2/2
∴综上,△AOB的最小值是p^2/2,此时AB垂直x轴
要证明以AB为直径的圆必与抛物线的准线相切,就要满足圆心O到准线的距离为AB一半(即半径)。
已知A(X1,Y1),B(X2,Y2),设焦点为F
因为抛物线上任一点到焦点的距离等于其到准线的距离
所以AB=AF+BF=X1+P/2+X2+P/2=X1+X2+P
而O为AB的中点,坐标为(X1+X2/2,Y1+Y2/2)
所以O到准线的距离= X1+X2/2+P/2=AB/2
得证
OA与抛物线方程联立:(kx)^=2px----->xA=2p/k^,yA=2p/k
OB与抛物线方程联立:(-x/k)^=2px--->xB=2pk^,yB=-2pk
AB方程:y+2pk = [(2p/k+2pk)/(2p/k^-2pk^)](x-2pk^)
令:y=0--->x=2pk^+2pk[(1/k^-k^)/(1/k+k)]
=2pk^+2p[(1-k^^)/(1+k^)]
=2pk^+2p(1-k^)
=2p
即:AB恒过定点(2p,0)
(1).当AB垂直x轴时,AB:x=p/2
A(p/2, p), B(p/2, -p)
AB=2p
S△AOB=p^2/2
(2).当AB不垂直x轴时,AB:y=k(x-p/2),k≠0
代入抛物线:k^2(x^2-px+p^2/4)=2px
k^2x^2-(k^2+2)px+k^2p^2/4=0
所以 x1+x2=(k^2+2)p/k^2, x1*x2=p^2/4
所以 |y1-y2|=√(y1-y2)^2
=√(kx1-kx2)^2
=|k|*√(x1-x2)^2
=|k|*√[(x1+x2)^2-4x1x2]
=|k|*√[(k^2+2)^2p^2/k^4-p^2]
=|2p/k|*√(k^2+1)
所以 S△AOB=|2p/k|*√(k^2+1)*(p/2)*(1/2)
=|p^2/2k|√(k^2+1)
=|p^2/2|√(1+1/k^2)
无最小值。当k趋向无穷大时,S△AOB=p^2/2
∴综上,△AOB的最小值是p^2/2,此时AB垂直x轴
要证明以AB为直径的圆必与抛物线的准线相切,就要满足圆心O到准线的距离为AB一半(即半径)。
已知A(X1,Y1),B(X2,Y2),设焦点为F
因为抛物线上任一点到焦点的距离等于其到准线的距离
所以AB=AF+BF=X1+P/2+X2+P/2=X1+X2+P
而O为AB的中点,坐标为(X1+X2/2,Y1+Y2/2)
所以O到准线的距离= X1+X2/2+P/2=AB/2
得证
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询