已知过抛物线y2=4x的焦点F的直线交该抛物线于A、B两点,|AF|=2,则|BF|等于几?
2个回答
2013-12-20
展开全部
分析:抛物线上任一点到焦点的距离与到准线的距离是相等的.已知|AF|=2,则到准线的距离答举也为2,根据图形AFKA1是正方形.
则易得AB⊥x轴,即可得答案.解:由抛物线的定义.抛物线上任一点到焦点的距离与到准线的距如举答离是相等的.
已知|AF|=2,则到准线的距离也为2.根据图形AFKA1,是正方形.
可知|AF|=|AA1|=|KF|=2∴AB⊥渣慧x轴故|AF|=|BF|=2.
故填|BF|=2.点评:活用圆锥曲线的定义是解决圆锥曲线最基本的方法.到焦点的距离,叫焦半径.到焦点的距离常转化到准线的距离求解.
则易得AB⊥x轴,即可得答案.解:由抛物线的定义.抛物线上任一点到焦点的距离与到准线的距如举答离是相等的.
已知|AF|=2,则到准线的距离也为2.根据图形AFKA1,是正方形.
可知|AF|=|AA1|=|KF|=2∴AB⊥渣慧x轴故|AF|=|BF|=2.
故填|BF|=2.点评:活用圆锥曲线的定义是解决圆锥曲线最基本的方法.到焦点的距离,叫焦半径.到焦点的距离常转化到准线的距离求解.
2013-12-20
展开全部
可得F点坐标为梁喊(1,0)由|AF|=2得x+1=2,点A横困渣派坐标为1
所汪贺以AB垂直于x轴,垂足为F
可得BF=2
所汪贺以AB垂直于x轴,垂足为F
可得BF=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询