求高中数学研究性小课题一篇

(高中数学研究性学习课题),主题最好是新颖一点的... (高中数学研究性学习课题),主题最好是新颖一点的 展开
 我来答
沙锶昔舞美告07
推荐于2017-09-19 · TA获得超过1.5万个赞
知道小有建树答主
回答量:2377
采纳率:91%
帮助的人:211万
展开全部
高中数学研究性学习课题集锦 一、课本知识延伸型 1、空集是一切集合的子集,但在解决关集合问题时,常常忽略这一事实。试整理这方面的 各类问题。 2、整理求定义域的规则及类型(特别是复合函数的类型) 。 3、求函数的值域、单调区间、最小正周期等有关问题时,往往希望将自变量在一个地方出 现,所以变量集中的原则就提供了解题的方向,试研究所有与变量集中原则有关的类型(如 配方法、带余除法等) 。 4、 总结求函数值域的有关方法, 探索判别式法的一般情形——实根分布的条件用于求值域。 5、利用条件最值的几何背景进行命题演变,与命题分类。 6、回顾解指数、对数方程(不等式)的化归实质(利用外层函数的单调性去掉两边的外层 函数的符号) ,我们称之为“给函数更衣” ,于是我们可以随心所欲地将方程(不等式)进行 演变。你能利用这一点编拟一些好题吗。 7、探求“反函数是它本身”的所有函数。从而可解决一类含抽象函数的方程,概括所有这 种方程的类型。 8、在原点有定义的奇函数,其隐含条件是 f(0)=0,试以这一事实编拟、演变命题。 9、把两面镜子相对而立,若你处于其中,将看到许多肖像位置呈现出周期性,你能把这一 事实数学化吗?若把轴对称改为中心对称又怎么结论? 10、对于含参数的方程(不等式) ,若已知解的情况确定参数的取值范围,我们通常用函数 思想及数形结合思想进行分离参数,试概括问题的类型,总结分离参数法。 11、 改变含参数的方程 (不等式) 的主元与参数的地位进行命题的演变。 探索换主元的功能。 12、数形结合是数学中的重要的思想方法之一,而单位圆中的三角函数线却被人们所遗忘, 试探它在解决三角问题中的数形结合功能。 13、整理三角代换的的类型,及其能解决的哪几类问题。 14、一个三角公式不仅能正用,还需会逆用与变用,试将后者整理之。 15、三角形的形状判定中,对于含边角混合关系的条件,利用正、余弦定理总有两种转化, 即转化为角关系或边关系,探索其中一种对另一种解法的启示功能。 16、一个数学命题若从正面入手分类情况较多,运算量较大,甚至无法求解,此时不妨考虑 其反面进行求解得解集,然后再取其补集即得原命题的解。我们把它称为“补集法” ,试整 理常见的类型的补集法。 17、概括使用均值不等式求最值问题中的“凑”的技巧 ,及拆项、添项的技巧。 18、观察式子的结构特征,如分析式子中的指数、系数等启示证题的的方向。 19、探求一些著名不等式(如柯西不等式、排序不等式等)和多种证法,寻找其背景以加深 对不等式的理解。 20、整理常用的一些代换(三角代换、均值代换等) ,探索它在命题转化中的功能。 21、考虑均值不等式的变换,及改变之后的不等式的背景意义。 22、分母为多项式的轮换对称不等式,由于难以参于通分,证明往往较难。探求一种代换, 将分母为多项式的转化为单项式。 23、关于数学知识在物理上的应用探索 24、对于数学的公式,我们应当做到三会:即正用、变用和逆用。如解几中有许多公式如两 点距离、点到直线距离公式,定比分点、斜率公式等,考虑其逆用,就可得到构造法证题, 试研究解几中的各种公式逆用,以充实构造法证明。 25、我们对待任何问题(包括解决数学问题)往往用自己的审美意识去审视,以调节自己的 行动计划。在解几中探索与搜集以美的启迪思维的题材,加以整理与综合研究。 26、 整理解几中常常被人忽视和特例而使问题的解决不完整的有素材, 如用点斜式而忽视斜 率存在,截距式而忽视截距为零等。 27、 利用角参数与距离参数的相互转化以实现命题的演变, 达到以点带面, 触类旁通的目的。 28、研究求轨迹问题中的坐标转移法与参数法的相互联系。 29、关于斜率为 1 的特殊直线的对称问题的简捷解法中,概括出适用范围更加广阔的解题 策略。 30、解决椭圆问题不如圆容易,能否使问题化归,即椭圆问题的圆化处理,进而研究圆锥曲 线(包括其退化情形如两条相交线,平行线等)的圆化处理。 31、整理与焦半径有关的问题,并将之“纯代数化” ,进而研究其“纯代数解法” ,从中探索 新方法。 32、把点差法解中点弦问题进行推广,使之能解决“定比分点弦”问题。 33、在定比分点公式、弦长公式、点到直线的距离公式的推导过程中隐含着“射影思想” , 扩大这思想在解几中的地位或功能。 34、与中点弦有关的圆锥曲线中的参数范围确定问题,往往需要建立不等式进行求解,各种 方法中以点在曲线内部条件为隹。试将这方法推广到定比分点弦的情形。 35、平几中证点共线、线共点往往较难,通常出现在竞赛中。而立几中的这类问题却是非简 单,主要的依据仅仅是平面的基本性质:两个平面的公共点共线。可否将平几问题的这类问 题进行升维处理。即把它转化为立几问世题加以解答。 36、用运变化的观点对待数学问题,将会发现问题的实质及问题之间的联系,但对于立几中 的这方面还显得不够,可以通过整理、收集这方面的材料加以综合研究。 37、 作为降维处理的一个例子: 可考虑异面直线距离的几种转化, 如转化为线面距、 点线距、 面面距等。 38、异面直线的距离是:异面直线上两动点的连线中最短的线段长度。所以可以用函数的观 点来解决。即建立一个两动点的距离函数,利用求函数的最小值达到目的。 39、立几中的许多问题可化归为确定点在平面内的射影位置。如点面距、点线距、体积等。 于是确定点在平面内的射影显得非常重要,试给出一种通用方法进行确定。 40、等积变换在立几中大显上内身手,而非等积变换是它的一般情形,作用更大,却被人们 所忽视。利用非等积变换能解决求体积、求距离、证明位置关系等问题。试利用类比平几的 相应方法探索之。 二、生活应用型(需要学生自己动手去有关部门搜集和整理原始资料) 1、银行存款利息和利税的调查 2、购房贷款决策问题 3、有关房子粉刷的预算 4、关于数学知识在物理上的应用探索 5、投资人寿保险和投资银行的分析比较 6、编程中的优化算法问题 7、余弦定理在日常生活中的应用 8、证券投资中的数学 9、环境规划与数学 10、如何计算一份试卷的难度与区分度 11、中国体育彩票中的数学问题 12、 “开放型题”及其思维对策 13、中国电脑福利彩票中的数学问题 14、城镇/农村饮食构成及优化设计 15、如何安置军事侦察卫星 16、如何存款最合算 17、哪家超市最便宜 18、数学中的黄金分割 29、通讯网络收费调查统计 20、数学中的最优化问题 21、水库的来水量如何计算 22、计算器对运算能力影响 23、统计铜陵市月降水量 24、出租车车费的合理定价 25、购房贷款决策问题 26、设计未来的中学数学课堂 27、电视机荧屏曲线的拟合函数的分析 28、用计算机软件编制数学游戏 29、制作一个数学的练习与检查反馈软件 30、制作较为复杂的数据统计表格与分析软件 31、制作一个中学生数学网站 32、如何计算一份试卷的难度与区分度 33、多媒体辅助教学在数学教学中的作用调查 34、零件供应站(最省问题) 35、拍照取景角最大问题 36、当地耕地而积的变化情况,预测今后的耕地而积 37、衣服的价格、质地、品牌,左右消费者观念多少? 38、如何提高数学课堂效率 39、数学的发展历史 40、“开放型题”及其思维对策
百度网友b6e31fa
2014-03-01
知道答主
回答量:19
采纳率:0%
帮助的人:2.6万
展开全部
“高中数学课程标准”正在积极、紧张的讨论和制订过程中,为了更广泛地了解社会各主要行业对高中数学课程和内容的需求,以便为“标准”的制订提供依据,我们在大学的理、工、文、农(含林医)、经济等专业和社会生活中理、工、文、农(含林医)、经济等行业中选择了有代表性的方向进行了调查、研究,现将有关结论综述如下,本次调查的其它结论见附录三、附录四、附录五、附录六、附录七。
  一、调查的对象、内容和调查方式。
  本次调查,我们选取了理科的物理、化学、计算机,工科的工程、机械、电工、无线电、文科的文学、艺术、历史、政治,农科的农业、林业、渔业、地理,以及经济学等专业作为主要调查对象。调查内容见附录一。调查方式采用问卷调查、走访提问、资料搜集等形式进行。
  二、调查结论。
  1.对数学的认识.
  调查结果显示,数学在现代社会生产、生活中各个方面的应用越来越广泛,数学已经渗透到各行各业,各个专业方向。从卫星到核电站,从天气预报到家居生活,高技术的高精度、高速度、高自动、高质量、高效率等特点,无不是通过数学模型和数学方法并借助计算机的控制来实现的。产品、工程的设计与制造,产品的质量控制,经济和科技中的预测和管理,信息处理,资源开发和环境保护,经济决策等,无不需要数学的应用。另外,数学文化、数学的思想方法,也处处影响人们的生产和生活。
  2.对现行高中数学教学内容使用情况的调查。
  本次调查把现行高中数学教材(必修本)和原二省一市,现十省市使用的高中数学教材的15个部分内容分为经常用到、有时用到、偶尔用到和不用等四个方面进行调查(见附录一)。调查结果如下(各个方面的意见不一致,大致统计)。
  经常用到:集合与简易逻辑,函数的解析式、图象,幂函数,指数函数,不等式的性质,解一元二次不等式,不等式的证明,解任意三角形,数列的通项公式,等差数列,等比数列,曲线与方程,直线方程,二元一次不等式的图象解法,简单线性规划问题,平面图形直观图的画法,加法原理,乘法原理,排列及排列数公式,组合及组合数公式,概率的意义,等可能事件的概率,互斥事件有一个发生的概率,独立重复试验发生的概率的,离散型随机变量分布列、期望值、方差,抽样方法,正态分布,线性回归,数列的极限,函数的极限,函数的连续性,导数的意义,初等函数的求导,函数的最大与最小值,求简单函数的不定积分,图形的面积计算,图形的体积。
  有时用到:映射, 反函数,指数函数 ,对数函数, 数学归纳法, 平面向量的运算,平面向量的坐标表示,平面向量的数量积, 三角函数的诱导公式,三角函数的图象和性质,圆的方程,抛物线及其标准方程,平面及其基本性质,空间向量及其运算,用空间向量处理几何问题,总体分布的估计,复合函数的求导,微分的运算,利用导数研究函数的性质,求简单函数的定积分,微积分基本公式,积分的其它应用,解指数不等式,复数的向量表示。
  偶尔用到:解无理不等式,解对数不等式,直线与平面的位置关系,多面体,棱柱,球, 椭圆极其标准方程,双曲线及其标准方程,椭圆、双曲线、抛物线的简单几何性质, 二项式定理,复数的运算。
  基本不用:平面与平面的位置关系,异面直线, 三角函数的和差化积与积化和差,棱锥,复数的三角形式运算。
  3.对是否可以列入新高中数学课程内容的调查。
  本次调查列出24个知识项分为可以与不可以两个方面进行调查(见附录一),结果如下(各个方向的意见不一致,大致统计)。
  认为可以列入的有:估算, 算法,向量与变换,行列式,矩阵的代数运算(以二维为主),逻辑量词,离散数学初步,数列的递推,条件概率,概率密度,连续型随机变量的分布列、期望值与方差,区间估计,相关系数,二项分布,探究性问题,用图形计算器解决问题,用计算机探究问题,数学建模。
  认为不可以列入的有:迭代法解方程, 矩阵与几何变换,复数的指数形式,复数与三角变换,回归函数,复合函数的积分,分步积分。
  对于本次调查的其他部分内容,如应重视哪能数学思想方法,应强调培养哪些数学能力,现行高中教材中“立体几何”“解析几何”“三角函数”等内容的功能和意义如何等项的调查正在进行之中。另外,根据附录一、二在网上调查也正在进行。
参考资料: http://www.cbe21.com/subject/maths/printer.php?article_id=1984
更多追问追答
追问
是要几个人研究一个生活中的数学问题,每个人提出意见,最后通过数学的方法去解决。
比如:关于理财的问题(最好新颖一点)
追答
学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。 
我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。
从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。
我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。
数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。

生活中的数学有哪些例子?很多.如:测量,勾股定理中的(3,4,5)...............
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
黄定飞1234
2017-09-19
知道答主
回答量:4
采纳率:0%
帮助的人:4385
展开全部
谁有完整版的高中数学小课题资料,发出来我们共享哈,谢谢
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
素兮兮丶
2014-03-01
知道答主
回答量:9
采纳率:0%
帮助的人:4.8万
展开全部
嘿嘿,我把我做过的研学课题和你说一下吧。
多米诺骨牌的轨道设计
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2014-03-01
展开全部
古典概型与数学分析
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 3条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式