第四题求证,要过程
2014-09-15
展开全部
不妨设f(x1)在这n个函数值之中是最大的,为M,f(xn)是最小的,为m于是容易知道t1f(x1)+...+tnf(xn)∈【m,M】
于是根据连续函数的介值定理,在区间【x1,xn】中至少存在一点c使得f(c)=t1f(x1)+...+tnf(xn)
证毕
于是根据连续函数的介值定理,在区间【x1,xn】中至少存在一点c使得f(c)=t1f(x1)+...+tnf(xn)
证毕
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询