已知sina=1/3,且a∈(π/2,π),cosb=-3/5,b求cosa/2∈(π,3π/2),求sin(a+b)、cos(a-b)的值
1个回答
展开全部
解:sina = 1/3,而且a∈(π/2,π),所以cosa < 0,cosa = -√(1 – sin 2 a)= -√(1 – 1/9) = -2√2/3 ; cosb = -3/5,而且b∈(π,3π/2),所以sinb < 0,sinb = -√(1 – cos 2 b)= -√(1 – 9/25) = -4/5 ; 所以cos(a/2) = √[(1 + cosa)/2] = √[(1 – 2√2/3)/2] = √[(3 – 2√2)/6] = (√2 – 1)/ √6 = (2 √ 3– √ 6)/6 ; sin(a + b) =sinacosb + cosasinb = (1/3)(-3/5) + (-2√2/3)(-4/5) = (-3 + 8 √2)/15 ; cos(a + b) =cosacosb – sinasinb = (-2√2/3)(-3/5) + (1/3)(-4/5) = (-4 + 6 √2)/15 。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询