高一数学求解答 采纳
2个回答
展开全部
解:(1). g(x)=b²-1=1+sin²2x-1=sin²2x=0,sin2x=0,2x=kπ,x=(1/2)kπ,(k∊ z);
(2).f(x)=a•b=2cos²x+(√3)sin2x=1+cos2x+(√3)sin2x=2[(1/2)cos2x+(√3/2)sin2x]+1
=2[cos2xcos(π/3)+sin2xsin(π/3)]+1=2cos(2x-π/3)+1
故f(x)的最小正周期T=2π/2=π;
单调增区间:由2kπ-π≦2x-π/3≦2kπ,得2kπ-2π/3≦2x≦2kπ+π/3;
于是得单增区间为kπ-π/3≦x≦kπ+π/6,(k∊ z);
(2).f(x)=a•b=2cos²x+(√3)sin2x=1+cos2x+(√3)sin2x=2[(1/2)cos2x+(√3/2)sin2x]+1
=2[cos2xcos(π/3)+sin2xsin(π/3)]+1=2cos(2x-π/3)+1
故f(x)的最小正周期T=2π/2=π;
单调增区间:由2kπ-π≦2x-π/3≦2kπ,得2kπ-2π/3≦2x≦2kπ+π/3;
于是得单增区间为kπ-π/3≦x≦kπ+π/6,(k∊ z);
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询