如何证明这个数列的有界性

老伍7192
2014-10-08 · TA获得超过9874个赞
知道大有可为答主
回答量:3195
采纳率:83%
帮助的人:1245万
展开全部
证这类题先要在草稿纸上求出上界
由a=√(3+a)解得a=(1+√13)/2
下面证明xn<(1+√13)/2
当n=1时,x1=√3<(1+√13)/2
假设当n=k时,有xk<(1+√13)/2
则当n=k+1时,有x(k+1)=√(3+xk)<√[3+(1+√13)/2 ]<√(7+√13)/2=√(14+2√13)/4
=√(1+√13)²/4=(1+√13)/2
即x(k+1)<(1+√13)/2
由数学归纳法知对任意正整数n都有xn<(1+√13)/2
所以xn有上界是(1+√13)/2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式