求道数学题
展开全部
解:∵圆心在抛物线y=1/16x^2的焦点
∴圆心(0,1/16÷4)即(0,1/64).
∵与直线5x+2y-4=0相切
∴r=|2*1/64-4|/√(25+4)=127√29/928
∴圆的方程:(x-0)²+(y-1/64)²=127²×29/928²=16129/29696
∴圆心(0,1/16÷4)即(0,1/64).
∵与直线5x+2y-4=0相切
∴r=|2*1/64-4|/√(25+4)=127√29/928
∴圆的方程:(x-0)²+(y-1/64)²=127²×29/928²=16129/29696
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
2p=16,p=8,故焦点坐标(0,4),该点到5x+2y-4=0的距离为d=4/√29,圆的方程为x^2+(y-4)^2=16/29
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x+16=36 48=x+20
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询