![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
大一的线代题目,请解答。
4个回答
展开全部
5 C
已知n维向量α1,α2,α3线性无关,若β1,β2,β3可用α1,α2,α3线性表出,设
(β1,β2,β3)=(α1,α2,α3)C
证明β1,β2,β3线性无关的充分必要条件是 |C|≠0
证:
记A=(α1,α2,α3),B=(β1,β2,β3)
必要性
若β1,β2,β3线性无关,则秩r(B)=r(β1,β2,β3)=3 又
r(B)=r(AC)≤r(C)≤3
因此,秩r(C)=3,即矩阵C可逆,|C|≠0
充分性
若|C|≠0,即矩阵C可逆,那么
r(B)=r(AC)=r(A)=r(α1,α2,α3)=3
所以β1,β2,β3线性无关。
希望把这一结论掌握。
已知n维向量α1,α2,α3线性无关,若β1,β2,β3可用α1,α2,α3线性表出,设
(β1,β2,β3)=(α1,α2,α3)C
证明β1,β2,β3线性无关的充分必要条件是 |C|≠0
证:
记A=(α1,α2,α3),B=(β1,β2,β3)
必要性
若β1,β2,β3线性无关,则秩r(B)=r(β1,β2,β3)=3 又
r(B)=r(AC)≤r(C)≤3
因此,秩r(C)=3,即矩阵C可逆,|C|≠0
充分性
若|C|≠0,即矩阵C可逆,那么
r(B)=r(AC)=r(A)=r(α1,α2,α3)=3
所以β1,β2,β3线性无关。
希望把这一结论掌握。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
DC
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
C第一个
追问
求详细的过程。
追答
我们做过这种题,是证明题,我是假设她是线性相关的,存在一组不全为零的实数使c1b1+c2b2+c3b3,
结果是与假设矛盾的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询