在△ABC中,已知B=45°,D是BC上一点,AD=5,AC=7,DC=3,求AB的长
展开全部
法一:在△ADC中,由余弦定理得:cos∠ADC=
=-
∵∠ADC∈(0,π),∴∠ADC=120°,
∴∠ADB=180°-∠ADC=60°
在△ABD中,由正弦定理得:AB=
=
=
法二:在△ADC中,由余弦定理得cos∠ACD=
=
∵∠ACD∈(0,π),∴sin∠ACD=
=
在△ABC中,由正弦定理得:AB=
=
=
故答案为:
32+52-72 |
2×3×5 |
1 |
2 |
∵∠ADC∈(0,π),∴∠ADC=120°,
∴∠ADB=180°-∠ADC=60°
在△ABD中,由正弦定理得:AB=
ADsin∠ADB |
sinB |
5sin60° |
sin45° |
5
| ||
2 |
法二:在△ADC中,由余弦定理得cos∠ACD=
32+72-52 |
2×3×7 |
11 |
14 |
∵∠ACD∈(0,π),∴sin∠ACD=
1- cos2∠ACD |
5
| ||
14 |
在△ABC中,由正弦定理得:AB=
ADsin∠ACD |
sinB |
7×
| ||||
sin45° |
5
| ||
2 |
故答案为:
5
| ||
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询