如图,等边△ABC中,D为AC上一点,E为BC延长线上一点且AD=CE,连接DB、DE;(1)求证:DB=DE;(2)若点D
如图,等边△ABC中,D为AC上一点,E为BC延长线上一点且AD=CE,连接DB、DE;(1)求证:DB=DE;(2)若点D在AC的延长线上,(1)中的结论是否还成立?若...
如图,等边△ABC中,D为AC上一点,E为BC延长线上一点且AD=CE,连接DB、DE;(1)求证:DB=DE;(2)若点D在AC的延长线上,(1)中的结论是否还成立?若成立,请画出图形,并证明;若不成立,说明理由.
展开
展开全部
(1)证明:过E作EF∥BA交AC的延长线于F点,如图,
∵△ABC为等边三角形,
∴∠A=∠ACB=60°,AB=AC,
∴∠F=60°,∠ECF=60°,
∴△CEF为等边三角形,
∴EF=CE=CF,
而AD=CE,
∴AD=EF,AC=DF=AB,
在△ABD和△FDE中,
AB=FD,
∠A=∠F,
AD=FE,
∴△ABD≌△FDE,
∴DB=DE;
(2)解:如图,(1)中的结论还成立,即有DB=DE.证明如下:
过E作EF∥BA交AC的延长线于F点,
和(1)一样可证明△CEF为等边三角形,
∴AD=CE=EF,DF=AC=AB,
易证得△ABD≌△FDE,
∴DB=DE.
∵△ABC为等边三角形,
∴∠A=∠ACB=60°,AB=AC,
∴∠F=60°,∠ECF=60°,
∴△CEF为等边三角形,
∴EF=CE=CF,
而AD=CE,
∴AD=EF,AC=DF=AB,
在△ABD和△FDE中,
AB=FD,
∠A=∠F,
AD=FE,
∴△ABD≌△FDE,
∴DB=DE;
(2)解:如图,(1)中的结论还成立,即有DB=DE.证明如下:
过E作EF∥BA交AC的延长线于F点,
和(1)一样可证明△CEF为等边三角形,
∴AD=CE=EF,DF=AC=AB,
易证得△ABD≌△FDE,
∴DB=DE.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询