如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)在图1中,若

如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)在图1中,若G在AD上,且∠GCE=45°,则GE=BE+G... 如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)在图1中,若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(3)根据你所学的知识,运用(1)、(2)解答中积累的经验,完成下列各题:①如图2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB的中点,且∠DCE=45°,求DE的长;②如图3,在△ABC中,∠BAC=45°,AD⊥BC,BD=2,CD=3,则△ABC的面积为______(直接写出结果,不需要写出计算过程). 展开
 我来答 举报
回憶很美较32
2015-02-10 · TA获得超过238个赞
知道答主
回答量:183
采纳率:97%
帮助的人:79.4万
展开全部
解答:(1)证明:在正方形ABCD中 CB=CD,∠B=∠CDA=90°,
∴∠CDF=∠B=90°.
在△BCE和△DCF中,
CB=CD
∠B=∠CDF
BE=DF

∴△BCE≌△DCF(SAS).
∴CE=CF.


(2)解:GE=BE+GD成立.理由如下:
∵∠BCD=90°,∠GCE=45°,
∴∠BCE+∠GCD=45°.
∵△BCE≌△DCF(已证),
∴∠BCE=∠DCF.
∴∠GCF=∠GCD+∠DCF=∠GCD+∠BCE=45°.
∴∠ECG=∠FCG=45°.
在△ECG和△FCG中,
CE=CF
∠ECG=∠FCG
CG=CG

∴△ECG≌△FCG(SAS).
∴GE=FG.
∵FG=GD+DF,
∴GE=BE+GD.

(3)解:①如图2,过点C作CG⊥AD交AD的延长线于点G,
由(2)和题设知:DE=DG+BE,
设DG=x,则AD=12-x,DE=x+6,
在Rt△ADE中,由勾股定理,得:
AD2+AE2=DE2
∴62+(12-x)2=(x+6)2
解得x=4.
∴DE=6+4=10;
②将△ABD沿着AB边折叠,使D与E重合,△ACD沿着AC边折叠,使D与G重合,
可得∠BAD=∠EAB,∠DAC=∠GAC,
∴∠EAG=∠E=∠G=90°,
AE=AG=AD,
BD=EB=2,
DC=CG=3,
∴四边形AEFG为正方形,
设正方形的边长为x,
可得BF=x-2,CF=x-3,
在Rt△BCF中,
根据勾股定理得:
BF2+CF2=BC2
即(x-2)2+(x-3)2=(2+3)2
解得:x=6或x=-1(舍去),
∴AD=6,
则S△ABC=
1
2
BC?AD=15.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式