(2012?大连二模)任选一题作答选修:几何证明选讲如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长

(2012?大连二模)任选一题作答选修:几何证明选讲如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.... (2012?大连二模)任选一题作答选修:几何证明选讲如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.(I)若AC=6,AB=10,求⊙O的半径;(Ⅱ)连接OE、ED、DF、EF.若四边形BDEF是平行四边形,试判断四边形OFDE的形状,并说明理由. 展开
 我来答
对联对句传承8
推荐于2016-11-07 · TA获得超过130个赞
知道答主
回答量:188
采纳率:0%
帮助的人:65万
展开全部
解答:解:(Ⅰ)连接OD. 设⊙O的半径为r.
∵BC切⊙O于点D,
∴OD⊥BC.
又∵∠C=90°,
∴OD∥AC,
∴△OBD∽△ABC.
OD
AC
=
OB
AB
,即 
r
6
=
10?r
10
.  
解得r=
15
4

∴⊙O的半径为
15
4
. …(4分)
(Ⅱ)结论:四边形OFDE是菱形. 理由如下 …(5分)
证明:∵四边形BDEF是平行四边形,
∴∠DEF=∠B.
∵∠DEF=
1
2
∠DOB,
∴∠B=
1
2
∠DOB.
∵∠ODB=90°,
∴∠DOB+∠B=
3
2
∠DOB=90°,
∴∠DOB=60°.
∵在平行四边形BDEF中,DE∥AB,
∴∠ODE=∠DOB=60°.
∵半径OD=OE,
∴△ODE是等边三角形.
∴OD=DE=OF,
即四边形OFDE的对边DE与OF平行且相等
∴四边形OFDE是平行四边形.
又∵邻边OE=OF,
∴平行四边形OFDE是菱形. …(10分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式