设数列{an}的前n项和为Sn,且满足S1=2,Sn+1=3Sn+2(n=1,2,3…).(Ⅰ)求证:数列{Sn+1}为等比数列;
设数列{an}的前n项和为Sn,且满足S1=2,Sn+1=3Sn+2(n=1,2,3…).(Ⅰ)求证:数列{Sn+1}为等比数列;(Ⅱ)求通项公式an;(Ⅲ)设bn=an...
设数列{an}的前n项和为Sn,且满足S1=2,Sn+1=3Sn+2(n=1,2,3…).(Ⅰ)求证:数列{Sn+1}为等比数列;(Ⅱ)求通项公式an;(Ⅲ)设bn=anS2n,求证:b1+b2+…+bn<1.
展开
展开全部
(Ⅰ)∵Sn+1=3Sn+2,
∴Sn+1+1=3(Sn+1)
∵S1+1=2+1=3
∴{Sn+1}是首项为3公比为3的等比数列.
(Ⅱ)∵{Sn+1}是首项为3公比为3的等比数列.
∴Sn+1=3×3n-1=3n,
∴Sn=3n-1,
Sn-1=3n-1-1,
∴an=Sn-Sn-1=3n-3n-1=
×3n.
(Ⅲ)证明:∵Sn=3n-1,an=
×3n,
∴bn=
=
=
<
=
×
,
设cn=
×
,
b1+b2+…+bn<c1+c2+c3+…+cn
=
(
+
+
+…+
)
<
(1+
+
+…+
)
=
×
∴Sn+1+1=3(Sn+1)
∵S1+1=2+1=3
∴{Sn+1}是首项为3公比为3的等比数列.
(Ⅱ)∵{Sn+1}是首项为3公比为3的等比数列.
∴Sn+1=3×3n-1=3n,
∴Sn=3n-1,
Sn-1=3n-1-1,
∴an=Sn-Sn-1=3n-3n-1=
2 |
3 |
(Ⅲ)证明:∵Sn=3n-1,an=
2 |
3 |
∴bn=
an | ||
|
| ||
(3n?1)2 |
| ||
32n?2×3n+1 |
<
| ||
3n?2 |
2 |
3 |
1 |
3n?2 |
设cn=
2 |
3 |
1 |
3 n?2 |
b1+b2+…+bn<c1+c2+c3+…+cn
=
2 |
3 |
1 |
3?2 |
1 |
9?2 |
1 |
27?2 |
1 |
3 n?2 |
<
2 |
3 |
1 |
3 |
1 |
9 |
1 |
3 n?1 |
=
2 |
3 |
1×(1?
|