展开全部
构造两个齐次线性方程组:
(1)Ax=0, (2)(AT A)x=0
如果这两个方程组同解,则两个方程组的系数矩阵有相同的秩,R(A)=R(AT A)=n-基础解系中向量个数。
这个很好理解对吧,《线性代数》的基本内容。
现在来证明它们同解:
首先,如果x1是(1)的解,那么它肯定也是(2)的解,因为将其代入(2):
(AT A)x1=AT (Ax1)=AT *0=0
其次证明(2)的解也是(1)的解:
设x1是(2)的解,则AT A x1=0
进一步有:x1T AT A x1=0
即(Ax1)T (Ax1)=0
假设Ax1=[a1,a2,...,an]T
则(Ax1)T(Ax1)=0就是a1^2+a2^2+...+an^2=0
那么只有a1=a2=...=an=0
也就是Ax1=0
至此说明了(2)的解也是(1)的解。
于是R(A)=R(AT A)
(1)Ax=0, (2)(AT A)x=0
如果这两个方程组同解,则两个方程组的系数矩阵有相同的秩,R(A)=R(AT A)=n-基础解系中向量个数。
这个很好理解对吧,《线性代数》的基本内容。
现在来证明它们同解:
首先,如果x1是(1)的解,那么它肯定也是(2)的解,因为将其代入(2):
(AT A)x1=AT (Ax1)=AT *0=0
其次证明(2)的解也是(1)的解:
设x1是(2)的解,则AT A x1=0
进一步有:x1T AT A x1=0
即(Ax1)T (Ax1)=0
假设Ax1=[a1,a2,...,an]T
则(Ax1)T(Ax1)=0就是a1^2+a2^2+...+an^2=0
那么只有a1=a2=...=an=0
也就是Ax1=0
至此说明了(2)的解也是(1)的解。
于是R(A)=R(AT A)
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
【分析】
逆矩阵定义:若n阶矩阵A,B满足AB=BA=E,则称A可逆,A的逆矩阵为B。
【解答】
A³-A²+3A=0,
A²(E-A)+3(E-A)=3E,
(A²+3)(E-A) = 3E
E-A满足可逆定义,它的逆矩阵为(A²+3)/3
【评注】
定理:若A为n阶矩阵,有AB=E,那么一定有BA=E。
所以当我们有AB=E时,就可以直接利用逆矩阵定义。而不需要再判定BA=E。
对于这种抽象型矩阵,可以考虑用定义来求解。
如果是具体型矩阵,就可以用初等变换来求解。
线性代数包括行列式、矩阵、线性方程组、向量空间与线性变换、特征值和特征向量、矩阵的对角化,二次型及应用问题等内容。
逆矩阵定义:若n阶矩阵A,B满足AB=BA=E,则称A可逆,A的逆矩阵为B。
【解答】
A³-A²+3A=0,
A²(E-A)+3(E-A)=3E,
(A²+3)(E-A) = 3E
E-A满足可逆定义,它的逆矩阵为(A²+3)/3
【评注】
定理:若A为n阶矩阵,有AB=E,那么一定有BA=E。
所以当我们有AB=E时,就可以直接利用逆矩阵定义。而不需要再判定BA=E。
对于这种抽象型矩阵,可以考虑用定义来求解。
如果是具体型矩阵,就可以用初等变换来求解。
线性代数包括行列式、矩阵、线性方程组、向量空间与线性变换、特征值和特征向量、矩阵的对角化,二次型及应用问题等内容。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
分析:证明齐次线性方程组A'Ax=0与Ax=0同解即可。
证明:首先,Ax=0的解都是A'Ax=0的解。
其次,若A'Ax=0,两边左乘以x',得x'A'Ax=(Ax)'(Ax)=0,所以Ax=0。所以A'Ax=0的解也是Ax=0的解。
所以A'Ax=0与Ax=0同解,其基础解系是等价的,也是等秩的,所以n-r(A'A)=n-r(A),所以r(A'A)=r(A)。
证明:首先,Ax=0的解都是A'Ax=0的解。
其次,若A'Ax=0,两边左乘以x',得x'A'Ax=(Ax)'(Ax)=0,所以Ax=0。所以A'Ax=0的解也是Ax=0的解。
所以A'Ax=0与Ax=0同解,其基础解系是等价的,也是等秩的,所以n-r(A'A)=n-r(A),所以r(A'A)=r(A)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询