(平)已知数列{an}中,a1=1,an+1an-1=anan-1+an2(n∈N+,n≥2),且an+1an=kn+1.(1)求实数k的值;(2
(平)已知数列{an}中,a1=1,an+1an-1=anan-1+an2(n∈N+,n≥2),且an+1an=kn+1.(1)求实数k的值;(2)设g(x)=anxn-...
(平)已知数列{an}中,a1=1,an+1an-1=anan-1+an2(n∈N+,n≥2),且an+1an=kn+1.(1)求实数k的值;(2)设g(x)=anxn-1(n-1)!,f(x)是数列{g(x)}的前n项和,求f(x)的解析式;(3)求证:不等式f(2)<3ng(3)对n∈N+恒成立.
展开
展开全部
(1)∵数列{an}中,a1=1,an+1an-1=anan-1+an2(n∈N+,n≥2),
且
=kn+1,
∴
=
+1=
+1+1=…=
+n-1,
∵
=k+1,
∴
=n+k=kn+1,
∴(n-1)k=n-1,
∴k=1.
(2)∵
=kn+1,k=1,
∴
=n-1+1=n,
∴an=n?an-1=n(n-1)?an-2=…=n!,
∵g(x)=
=
=n?xn-1,
∴g(1)=n,g (2)=n? 2n-1,g(3)=n?3n-1,…,g(n)=n?nn-1,
∵f(x)是数列{g(x)}的前n项和,
∴f(x)=g(1)+g(2)+g(3)+…+g(n)
=n+n?2n-1+n?3n-1+…+n?nn-1
=n(1+2n-1+3n-1+…+nn-1).
证明:(3)∵f(2)=n(1+2n-1),
g(3)=
?n?3n-1=3n,
∴不等式f(2)<
g(3)对n∈N+恒成立等价于n(1+2n-1)<3<
且
an+1 |
an |
∴
an+1 |
an |
a n |
an-1 |
an-1 |
an-2 |
a2 |
a1 |
∵
a2 |
a1 |
∴
an+1 |
an |
∴(n-1)k=n-1,
∴k=1.
(2)∵
an+1 |
an |
∴
an |
an-1 |
∴an=n?an-1=n(n-1)?an-2=…=n!,
∵g(x)=
anxn-1 |
(n-1)! |
n!?xn-1 |
(n-1)! |
∴g(1)=n,g (2)=n? 2n-1,g(3)=n?3n-1,…,g(n)=n?nn-1,
∵f(x)是数列{g(x)}的前n项和,
∴f(x)=g(1)+g(2)+g(3)+…+g(n)
=n+n?2n-1+n?3n-1+…+n?nn-1
=n(1+2n-1+3n-1+…+nn-1).
证明:(3)∵f(2)=n(1+2n-1),
3 |
n |
3 |
n |
∴不等式f(2)<
3 |
n |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询