如图,在平面直角坐标系中,?OABC的顶点A在y轴的正半轴上,顶点B在x轴的正半轴上,对角线AC、OB交于点D,
如图,在平面直角坐标系中,?OABC的顶点A在y轴的正半轴上,顶点B在x轴的正半轴上,对角线AC、OB交于点D,且OA、OB的长是方程x2-12x+32=0的两根(OA<...
如图,在平面直角坐标系中,?OABC的顶点A在y轴的正半轴上,顶点B在x轴的正半轴上,对角线AC、OB交于点D,且OA、OB的长是方程x2-12x+32=0的两根(OA<OB).(1)求直线AC的函数解析式;(2)若点P从A点出发,以每秒1个单位的速度沿射线AC运动,连接OP.设△OPD的面积为S,点P的运动时间为t秒,求S与t的函数关系式,并写出自变量的取值范围;(3)若点M是直线AC上一点,则在平面上是否存在点N,使以A、B、M、N为顶点四边形为菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
展开
1个回答
展开全部
(1)∵OA、OB的长x2-12x+32=0的两根,OA<OB,
∴OA=4,OB=8,点A坐标为(0,4),点B坐标为(8,0),
又∵四边形ABCD是平行四边形,
∴可得点C的横坐标等于点B的横坐标,点C的纵坐标等于点A的纵坐标的相反数,
故点C的坐标为(8,-4),
设直线AC的解析式为:y=kx+b,则
,
解得:
,
故直线AC的解析式为:y=-x+4;
(2)由(1)可得OB=8,根据平行四边形的性质可得点D坐标为(4,0),
即OA=OD,∠OAD=∠ODA=45°,AD=4
,
①当点P在线段AD上时,此时t<4
;
过点P作PE⊥OA,PF⊥OB,则可得AP=t,
在RT△AEP中,EP=
t,即点P的横坐标为
∴OA=4,OB=8,点A坐标为(0,4),点B坐标为(8,0),
又∵四边形ABCD是平行四边形,
∴可得点C的横坐标等于点B的横坐标,点C的纵坐标等于点A的纵坐标的相反数,
故点C的坐标为(8,-4),
设直线AC的解析式为:y=kx+b,则
|
解得:
|
故直线AC的解析式为:y=-x+4;
(2)由(1)可得OB=8,根据平行四边形的性质可得点D坐标为(4,0),
即OA=OD,∠OAD=∠ODA=45°,AD=4
2 |
①当点P在线段AD上时,此时t<4
2 |
过点P作PE⊥OA,PF⊥OB,则可得AP=t,
在RT△AEP中,EP=
| ||
2 |
|