如图,矩形ABCD中,对角线AC、BD交于点O,DE∥AC,CE∥BD。(1)试判断四边形OCED是何种特殊四边形,并加

如图,矩形ABCD中,对角线AC、BD交于点O,DE∥AC,CE∥BD。(1)试判断四边形OCED是何种特殊四边形,并加以证明.(2)若∠OAD=300,F、G分别在OD... 如图,矩形ABCD中,对角线AC、BD交于点O,DE∥AC,CE∥BD。(1)试判断四边形OCED是何种特殊四边形,并加以证明.(2)若∠OAD=30 0 ,F、G分别在OD、DE上,OF=DG,连结CF、CG、FG, 判断△CFG形状,并加以证明. 展开
 我来答
阴符泰斗文章4297
推荐于2016-03-28 · TA获得超过115个赞
知道答主
回答量:114
采纳率:100%
帮助的人:67.7万
展开全部
(1)菱形,证明见解析;(2)等边三角形,证明见解析.


试题分析:(1)根据矩形性质求出OC=OD,根据平行四边形的判定得出四边形OCED是平行四边形,根据菱形判定推出即可;
(2)判断出△OCD和△CDE是等边三角形,根据等边三角形的性质可得∠COD=∠CDG=60°,再利用“边角边”证明△COF和△CDG全等,根据全等三角形对应边相等可得CF=CG全等三角形对应角相等可得∠DCG=∠OCF,再求出∠FCG=60°,然后判断出△CFG是等边三角形.
试题解析:(1)证明:∵四边形ABCD是矩形,
∴AC=2OC,BD=2OD,AC=BD,
∴OD=OC,
∵DE∥AC,CE∥BD,
∴四边形OCED是菱形.
(2)在矩形ABCD中,△OCD和△CDE是等边三角形,

∴∠COD=∠CDG=60°,
在△COF和△CDG,

∴△COF≌△CDG(SAS),
∴CF=CG,∠DCG=∠OCF,
∴∠FCG=∠DCO=60°,
∴△CFG为等边三角形.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式