如图△ABC是等边三角形,BD是中线,延长BC到E,使CE=CD.求证:DB=DE
如图△ABC是等边三角形,BD是中线,延长BC到E,使CE=CD.求证:DB=DE....
如图△ABC是等边三角形,BD是中线,延长BC到E,使CE=CD.求证:DB=DE.
展开
乖宝宝恫夹5
2015-01-27
·
超过58用户采纳过TA的回答
知道答主
回答量:188
采纳率:50%
帮助的人:119万
关注
证明:∵△ABC是等边三角形,BD是中线, ∴∠ABC=∠ACB=60°. ∠DBC=30°(等腰三角形三线合一). 又∵CE=CD, ∴∠CDE=∠CED. 又∵∠BCD=∠CDE+∠CED, ∴∠CDE=∠CED= ∠BCD=30°. ∴∠DBC=∠DEC. ∴DB=DE(等角对等边). |
收起
为你推荐: