在△ABC中,∠ACB=2∠B,∠BAC的平分线AD交BC于点D.(1)如图1,过点C作 CF⊥AD于F,延长CF交AB于点E.
在△ABC中,∠ACB=2∠B,∠BAC的平分线AD交BC于点D.(1)如图1,过点C作CF⊥AD于F,延长CF交AB于点E.联结DE.①说明AE=AC的理由;②说明BE...
在△ABC中,∠ACB=2∠B,∠BAC的平分线AD交BC于点D.(1)如图1,过点C作 CF⊥AD于F,延长CF交AB于点E.联结DE.①说明AE=AC的理由;②说明BE=DE的理由;(2)如图2,过点B作直线BM⊥AD交AD延长线于M,交AC延长线于点N.说明CD=CN的理由.
展开
展开全部
(1)①∵AD平分∠BAC,
∴∠EAD=∠CAD,
∵CF⊥AD,
∴∠AFE=∠AFC=90°,
在△AEF和△ACF中,
,
∴△AEF≌△ACF(ASA),
∴AE=AC;
②在△AED和△ACD中,
,
∴△AED≌△ACD(SAS),
∴∠AED=∠ACB
∵∠ACB=2∠B,
∴∠AED=2∠B,
又∵∠AED=∠B+∠EDB,
∴∠B=∠EDB,
∴BE=DE;
(2)连接DN,易证△ABM≌△ANM,
所以AB=AN,
在△ABD和△AND中,
,
∴△ABD≌△AND(SAS),
∴∠ABD=∠AND,
∵∠ACB=2∠B,即∠ACB=2∠ABD,
∴∠ACB=2∠AND,
又∵∠ACB=∠CDN+∠AND,
∴∠CDN=∠AND,
∴CD=CN.
∴∠EAD=∠CAD,
∵CF⊥AD,
∴∠AFE=∠AFC=90°,
在△AEF和△ACF中,
|
∴△AEF≌△ACF(ASA),
∴AE=AC;
②在△AED和△ACD中,
|
∴△AED≌△ACD(SAS),
∴∠AED=∠ACB
∵∠ACB=2∠B,
∴∠AED=2∠B,
又∵∠AED=∠B+∠EDB,
∴∠B=∠EDB,
∴BE=DE;
(2)连接DN,易证△ABM≌△ANM,
所以AB=AN,
在△ABD和△AND中,
|
∴△ABD≌△AND(SAS),
∴∠ABD=∠AND,
∵∠ACB=2∠B,即∠ACB=2∠ABD,
∴∠ACB=2∠AND,
又∵∠ACB=∠CDN+∠AND,
∴∠CDN=∠AND,
∴CD=CN.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询