如图所示.△ABC是边长为1的正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角

如图所示.△ABC是边长为1的正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB,AC于M,N,连接MN,求△AMN的周... 如图所示.△ABC是边长为1的正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB,AC于M,N,连接MN,求△AMN的周长. 展开
 我来答
猴卵构7
推荐于2017-12-15 · 超过67用户采纳过TA的回答
知道答主
回答量:141
采纳率:83%
帮助的人:58.5万
展开全部
令CP=BM,交AC延长线于P,连接DP.
∵△BDC是等腰三角形,且∠BDC=120°
∴BD=CD,∠DBC=∠DCB=30°
又∵△ABC等边三角形
∴∠ABC=∠ACB=60°
∴∠MBD=∠ABC+∠DBC=90°
同理可得∠NCD=90°
∴∠PCD=∠NCD=∠MBD=90°
又∵CP=BM,
∴△BDM≌△CDP
∴MD=PD
∠MDB=∠PDC
∵∠MDN=60°
∴∠MDB+∠NDC=∠PDC+∠NDC=∠BDC-∠MDN=60°即∠MDN=∠PDN=60°
∴△NMD≌△NPD(SAS)
∴MN=PN=NC+CP=NC+BM
∴△AMN的周长=AM+AN+MN=AM+AN+NC+BM=AB+AC=1+1=2
故△AMN的周长为2.
自然智慧树
高粉答主

2018-04-17 · 关注我不会让你失望
知道大有可为答主
回答量:225
采纳率:93%
帮助的人:13.5万
展开全部

△AMN的周长为(6 )

延长AC到E,使CE=BM.

证明△DCE≌△DBM

再证明△DNE≌△DNM

MN=NE=NC+CE=NC+MB,AM+AN+MN=AB+AC.

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式