如图,已知△ABC中,∠C=90°,AC=BC,AB=6,O是BC边上的中点,N是AB边上的点(不与端点重合),M是OB边

如图,已知△ABC中,∠C=90°,AC=BC,AB=6,O是BC边上的中点,N是AB边上的点(不与端点重合),M是OB边上的点,且MN∥AO,延长CA与直线MN相交于点... 如图,已知△ABC中,∠C=90°,AC=BC,AB=6,O是BC边上的中点,N是AB边上的点(不与端点重合),M是OB边上的点,且MN∥AO,延长CA与直线MN相交于点D,G点是AB延长线上的点,且BG=AN,连接MG,设AN=x,BM=y.(1)求y关于x的函数关系式及其定义域;(2)连接CN,当以DN为半径的⊙D和以MG为半径的⊙M外切时,求∠ACN的正切值;(3)当△ADN与△MBG相似时,求AN的长. 展开
 我来答
e你LF9
推荐于2016-12-01 · TA获得超过363个赞
知道答主
回答量:130
采纳率:0%
帮助的人:186万
展开全部
(1)y= (0<x<6)      (2)tan∠ACN=
(3)AN的长为2或


试题分析:(1)解:∵MN∥AO,
∴△BMN∽△BOA,
=
∵∠C=90°,AC=BC,AB=6,
∴由勾股定理得:BC=3
∵O是BC边上的中点,
∴BO=
∵AN=x,BM=y,
=
∴y= (0<x<6);
(2)解:
∵以DN为半径的⊙D和以MG为半径的⊙M外切,
∴DN+MG=DM,又DN+MN=DM,
∴MG=MN,
∴∠MNG=∠G,
又∵∠MNG=∠AND,
∴∠AND=∠G,
∵AC=BC,
∴∠CAB=∠CBA,
∴∠DAN=∠MBG,
又∵AN=BG,
∴△AND≌△BGM,
∴DN=MG=MN,
∵∠ACB=90°,
∴CN=DN,
∴∠ACN=∠D,
∵∠ACB=90°,AC=BC,O是BC边上的中点,
∴tan∠CAO= =
∵MN∥AO,
∴∠CAO=∠D,
∴∠CAO=∠ACN,
∴tan∠ACN=
(3)解:∵∠DAN=∠MBG,当△ADN与△MBG相似时,分为两种情况:
①若∠D=∠BMG时,过点G作GE⊥CB,垂足为点E,
tan∠BMG= =
∵∠ACB=90°,GE⊥BC,
∴AC∥GE,
∴∠BGE=∠CAB=45°,
∵∠ABC=∠GBE=45°,
∴∠ABC=∠GBE=∠BGE=45°,
∴BE=EG,
∴BM=BE,
∴由勾股定理得:y= x,
∵由(1)知:y=
∴解得:x=2;
②若∠D=∠G时,过点M作MF⊥AB,垂足为点F,
∴tan∠G= =
∴FG=2MF,
∵∠C=90°,AC=BC,
∴∠MBF=∠CAB=45°,
∵∠MFB=90°,
∴∠FMB=∠MBF=45°,
∴BF=MF,
∵FG=2MF=BF+BG,
∴BF=BG,
∴x= y,
由(1)知:y=
∴解得:x=
综上所述,当△ADN与△MBG相似时,AN的长为2或
点评:本题考查了相似三角形的性质和判定,全等三角形的性质和判定,平行线的性质,等腰三角形的性质,等腰直角三角形,勾股定理等知识点的运用,主要考查学生综合运用性质进行推理和计算的能力,题目综合性比较强,难度偏大,分类讨论思想的运用.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式