如图,△ABC是等边三角形,分别延长CA,AB,BC到A′,B′,C′,使AA′=BB′=CC′=AC,若△ABC的面积为1

如图,△ABC是等边三角形,分别延长CA,AB,BC到A′,B′,C′,使AA′=BB′=CC′=AC,若△ABC的面积为1,则△的面积=()A.5B.6C.7D.无法确... 如图,△ABC是等边三角形,分别延长CA,AB,BC到A′,B′,C′,使AA′=BB′=CC′=AC,若△ABC的面积为1,则△ 的面积=( ) A.5 B.6 C.7 D.无法确定 展开
 我来答
小说年华3979
2014-08-17 · TA获得超过1081个赞
知道答主
回答量:150
采纳率:0%
帮助的人:144万
展开全部
C

由于AA′=BB′=CC′=AC,所以得到AA′=BB′=CC′=AB=BC=AC,∴△B′BC和△ABC等底同高,△B′BC和△B′CC′也是等底同高,则由三角形面积公式得△B′BC的面积等于△ABC的面积为1,△B′CC′的面积也为1,同理同理可以求出其他部分的面积,最后求出总和,即△A′B′C′的面积.
解:连接A′B、B′C、C′A,
∵△ABC是等边三角形,
∴AB=BC=AC,
已知AA′=BB′=CC′=AC,
∴AA′=BB′=CC′=AB=BC=AC,
∴△B′BC和△ABC等底同高,
∴△B′BC的面积等于△ABC的面积为1,
△B′BC和△B′CC′也是等底同高,
∴△B′CC′的面积也为1,
同理得:△A′AB、△A′BB′、△A′AC′、△ACC′的面积都为1,
所以得△A′B′C′的面积为:△A′AB、△A′BB′、△A′AC′、△ACC′、△B′BC、△B′CC′、△ABC的面积之和,
即:1+1+1+1+1+1+1=7,
故答案为:C.

本题主要考查了灵活运用三角形的面积公式,求出各部分之间的关系,进而求出面积的方法.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式