(2014?海口一模)如图,P是边长为1的正方形ABCD对角线BD上一动点(P与B、D不重合),∠APE=90°,且点E

(2014?海口一模)如图,P是边长为1的正方形ABCD对角线BD上一动点(P与B、D不重合),∠APE=90°,且点E在BC边上,AE交BD于点F.(1)求证:①△PA... (2014?海口一模)如图,P是边长为1的正方形ABCD对角线BD上一动点(P与B、D不重合),∠APE=90°,且点E在BC边上,AE交BD于点F.(1)求证:①△PAB≌△PCB;②PE=PC;(2)在点P的运动过程中,APAE的值是否改变?若不变,求出它的值;若改变,请说明理由;(3)设DP=x,当x为何值时,AE∥PC,并判断此时四边形PAFC的形状. 展开
 我来答
手机用户62863
2015-01-17 · TA获得超过120个赞
知道答主
回答量:196
采纳率:83%
帮助的人:61.6万
展开全部
(1)①∵四边形ABCD是正方形,
∴AB=BC,∠ABP=∠CBP=
1
2
∠ABC=45°.
∵PB=PB,
∴△PAB≌△PCB (SAS).
②由△PAB≌△PCB可知,∠PAB=∠PCB.
∵∠ABE=∠APE=90°,
∴∠PAB+∠PEB=180°,
又∵∠PEC+∠PEB=180°,
∴∠PEC=∠PAB=∠PCB,
∴PE=PC.

(2)在点P的运动过程中,
AP
AE
的值不改变.
由△PAB≌△PCB可知,PA=PC.
∵PE=PC,
∴PA=PE,
又∵∠APE=90°,
∴△PAE是等腰直角三角形,∠PAE=∠PEA=45°,
AP
AE
2
2


(3)∵AE∥PC,
∴∠CPE=∠PEA=45°,
∴在△PEC中,∠PCE=∠PEC=
1
2
(180°-45°)=67.5°.
在△PBC中,
∠BPC=(180°-∠CBP-∠PCE)=(180°-45°-67.5°)=67.5°.
∴∠BPC=∠PCE=67.5°,
∴BP=BC=1,
∴x=BD-BP=
2
-1.
∵AE∥PC,
∴∠AFP=∠BPC=67.5°,
由△PAB≌△PCB可知,∠BPA=∠BPC=67.5°,PA=PC,
∴∠AFP=∠BPA,
∴AF=AP=PC,
∴四边形PAFC是菱形.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式