在平面直角坐标系xOy中,抛物线y=-x2+bx+c与x轴交于A、B两点(点A在点B的左侧),过点A的直线y=kx+1交抛
在平面直角坐标系xOy中,抛物线y=-x2+bx+c与x轴交于A、B两点(点A在点B的左侧),过点A的直线y=kx+1交抛物线于点C(2,3).(1)求直线AC及抛物线的...
在平面直角坐标系xOy中,抛物线y=-x2+bx+c与x轴交于A、B两点(点A在点B的左侧),过点A的直线y=kx+1交抛物线于点C(2,3).(1)求直线AC及抛物线的解析式;(2)若直线y=kx+1与抛物线的对称轴交于点E,以点E为中心将直线y=kx+1顺时针旋转90°得到直线l,设直线l与y轴的交点为P,求△APE的面积;(3)若G为抛物线上一点,是否存在x轴上的点F,使以B、E、F、G为顶点的四边形为平行四边形?若存在,直接写出点F的坐标;若不存在,请说明理由.
展开
1个回答
展开全部
(1)∵点C(2,3)在直线y=kx+1上,
∴2k+1=3.
解得k=1.
∴直线AC的解析式为y=x+1.
∵点A在x轴上,
∴A(-1,0).
∵抛物线y=-x2+bx+c过点A、C,
∴
解得
∴抛物线的解析式为y=-x2+2x+3.
(2)由y=-x2+2x+3=-(x-1)2+4,
可得抛物线的对称轴为x=1,B(3,0).
∴E(1,2).
根据题意,知点A旋转到点B处,直线l过点B、E.
设直线l的解析式为y=mx+n.
将B、E的坐标代入y=mx+n中,
联立可得m=-1,n=3.
∴直线l的解析式为y=-x+3.
∴P(0,3).
过点E作ED⊥x轴于点D.
∴S△PAE=S△PAB-S△EAB=
AB?PO-
AB?ED=
×4×(3-2)=2.
(3)存在,点F的坐标分别为(3-
,0),(3+
,0),(-1-
,0)(-1+
,0).
∴2k+1=3.
解得k=1.
∴直线AC的解析式为y=x+1.
∵点A在x轴上,
∴A(-1,0).
∵抛物线y=-x2+bx+c过点A、C,
∴
|
解得
|
∴抛物线的解析式为y=-x2+2x+3.
(2)由y=-x2+2x+3=-(x-1)2+4,
可得抛物线的对称轴为x=1,B(3,0).
∴E(1,2).
根据题意,知点A旋转到点B处,直线l过点B、E.
设直线l的解析式为y=mx+n.
将B、E的坐标代入y=mx+n中,
联立可得m=-1,n=3.
∴直线l的解析式为y=-x+3.
∴P(0,3).
过点E作ED⊥x轴于点D.
∴S△PAE=S△PAB-S△EAB=
1 |
2 |
1 |
2 |
1 |
2 |
(3)存在,点F的坐标分别为(3-
2 |
2 |
6 |
6 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询