已知:如图,在Rt△ABC中,∠A=90°,以AB为直径作⊙O,BC交⊙O于点D,E是边AC的中点,ED、AB的延长线相

已知:如图,在Rt△ABC中,∠A=90°,以AB为直径作⊙O,BC交⊙O于点D,E是边AC的中点,ED、AB的延长线相交于点F.求证:(1)DE为⊙O的切线.(2)AB... 已知:如图,在Rt△ABC中,∠A=90°,以AB为直径作⊙O,BC交⊙O于点D,E是边AC的中点,ED、AB的延长线相交于点F.求证:(1)DE为⊙O的切线.(2)AB?DF=AC?BF. 展开
 我来答
雕刻时光3716
推荐于2016-09-23 · TA获得超过731个赞
知道答主
回答量:120
采纳率:0%
帮助的人:59.2万
展开全部
(1)证明见解析;(2)证明见解析.


试题分析:(1)连接OD、AD,求出CDA=∠BDA=90°,求出∠1=∠4,∠2=∠3,推出∠4+∠3=∠1+∠2=90°,根据切线的判定推出即可;
(2)证△ABD∽△CAD,推出 ,证△FAD∽△FDB,推出 ,即可得出AB:AC=BF:DF.
(1)连结DO、DA,

∵AB为⊙O直径,
∴∠CDA=∠BDA=90°,
∵CE=EA,
∴DE=EA,
∴∠1=∠4,
∵OD=OA,
∴∠2=∠3,源旁
∵∠4+∠3=90°,
∴∠1+∠2=90°,
即:∠EDO=90°,
∵OD是半径,
∴DE为⊙O的切线;
(2)∵∠3+∠DBA=90°,∠3+∠4=90°,
∴∠4=∠DBA,
∵乱塌∠CDA=∠BDA=90°,
∴△ABD∽△CAD,

∵∠FDB+∠BDO=90°,∠DBO+∠3=90°,
又∵OD=OB,
∴∠BDO=∠DBO,
∴∠雹陪橡3=∠FDB,
∵∠F=∠F,
∴△FAD∽△FDB,


即AB:AC=BF:DF.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式