已知数列{an}满足对任意的n∈N+,都有an>0,且a13+a23+…+an3=(a1+a2+…+an)2.(1)求数列{an}的通项

已知数列{an}满足对任意的n∈N+,都有an>0,且a13+a23+…+an3=(a1+a2+…+an)2.(1)求数列{an}的通项公式an;(2)设数列{1anan... 已知数列{an}满足对任意的n∈N+,都有an>0,且a13+a23+…+an3=(a1+a2+…+an)2.(1)求数列{an}的通项公式an;(2)设数列{1anan+2}的前n项和为Sn,不等式Sn>13loga(1-a)对任意的正整数n恒成立,求实数a的取值范围. 展开
 我来答
哎琴而q
推荐于2016-07-01 · 超过52用户采纳过TA的回答
知道答主
回答量:174
采纳率:0%
帮助的人:52.3万
展开全部
(1)∵a13+a23+…+an3=(a1+a2+…+an2,①
则有a13+a23+…+an3+an+13=(a1+a2+…+an+an+12,②
②-①,得an+13=(a1+a2+…+an+an+12-(a1+a2+…+an2
∵an>0,
an+12=2(a1+a2+…+an)+an+1,③
同样有an2=2(a1+a2+…+an-1)+an(n≥2),④
③-④,得an+12-an2=an+1+an
∴an+1-an=1,又a2-a1=1,即当n≥1时都有an+1-an=1,
∴数列{an}是首项为1,公差为1的等差数列,
∴an=n.
(2)由(1)知an=n,则
1
anan+2
=
1
n(n+2)
=
1
2
1
n
-
1
n+2
).
∴Sn=
1
a1a3
+
1
a2a4
+
1
a3a5
+…+
1
an-1an+1
+
1
anan+2

=
1
2
[(1-
1
3
)+(
1
2
-
1
4
)+(
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消