∫ ln{x+根号(1+x^2)}dx 不定积分 过程

 我来答
教育小百科达人
2021-07-23 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:478万
展开全部

具体回答如下:

∫ln(x+√(1+x^2))dx

=xln(x+√(1+x^2))-∫xdln(x+√(1+x^2))

=xln(x+√(1+x^2))-∫x/√(1+x^2)dx

=xln(x+√(1+x^2))-(1/3)(√(1+x^2))^3+C

不定积分的意义:

一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。

若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

Jymac
推荐于2018-02-21 · TA获得超过7106个赞
知道大有可为答主
回答量:1769
采纳率:90%
帮助的人:612万
展开全部

用分部积分法:

( 有问题欢迎追问 @_@ )

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
轮看殊O
高粉答主

2021-01-05 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:759万
展开全部

用分部积分法便可

∫ln[x+√(1+x²)]dx

=xln[x+√(1+x²)]-∫xdln[x+√(1+x²)]

=xln[x+√(1+x²)]-∫x/[x+√(1+x²)]*d[x+√(1+x²)]

=xln[x+√(1+x²)]]-∫x/[x+√(1+x²)]*{1+2x/[2√(1+x²)]}dx

=xln[x+√(1+x²)]-∫x/[x+√(1+x²)]*[√(1+x²)+x]/√(1+x²)dx

=xln[x+√(1+x²)]-∫1/√(1+x²)d(x²/2)

=xln[x+√(1+x²)]-(1/2)∫d(1+x²)/√(1+x²)

=xln[x+√(1+x²)]-(1/2)*2√(1+x²)+C

=xln[x+√(1+x²)]-√(1+x²)+C

扩展资料

不定积分的公式

1、∫ a dx = ax + C,a和C都是常数

2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1

3、∫ 1/x dx = ln|x| + C

4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1

5、∫ e^x dx = e^x + C

6、∫ cosx dx = sinx + C

7、∫ sinx dx = - cosx + C

8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
徐临祥
高粉答主

2019-12-20 · 醉心答题,欢迎关注
知道小有建树答主
回答量:3380
采纳率:96%
帮助的人:94.5万
展开全部
dx/[x+√(1-x^2)]
令x=sint
原式=∫cost/(sint+cost) dt
=1/2 ∫(cost-sint)/(sint+cost) dt+1/2 ∫(cost+sint)/(sint+cost) dt
=1/2∫1/(sint+cost) d(sint+cost)+1/2∫dt
=1/2ln|sint+cost|+1/2t+c
t=arcsinx
cost=√1-x^2
所以
原式=1/2ln|x+√(1-x^2)|+1/2arcsinx+C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
在古戏楼存钱的罗汉果
2015-04-11 · TA获得超过5064个赞
知道小有建树答主
回答量:812
采纳率:50%
帮助的人:175万
展开全部
∫ln(x+√(1+x^2))dx 
=xln(x+√(1+x^2) -∫xd(ln(x+√(1+x^2)) 
[ln(x+√1+x^2)]'=[1+x/√(1+x^2)]/(x+√(1+x^2))=1/√(1+x^2)
=xln(x+√(1+x^2)-∫xdx/√(1+x^2)
=xln(x+√(1+x^2)-(1/2)∫d(1+x^2)/√(1+x^2)
=xln(x+√(1+x^2)-√(1+x^2)+C
追问

为什么?
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式